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PREFACE.

By reason of the great increase that has taken place of recent years
throughout the world in the utilization of water power, notably in
connection with the electric transmission of energy, a speciai ana grow-
ing prominence attaches to the subject of Hydraulic Motors in the
curriculum of engineering schools.

In the preparation of the following pages, as forming a text-bbok
on this important branch of hydraulics for the use of students of -eugl—'
neering, it has been borne in mind that to facilitate the acquirerfiert
of clear and sound ideas on the mechanics of the subject is the first
essential of such a book; and, as greatly assisting to this end, ample

' numenical illustration has been provided in direct connection with the
- necessary algebraic treatment. At the same time, it is believed that

sufficient descriptive matter has been introduced, relating to both past
and present construction and design, to make the treatment a fairly
practical one for its purpose, when regard is had to the limited time
available for this subject in the ordinary course of study at an engi-
neering school.

Some attention is also given to centrifugal pumps (so much improved
of recent years) and other allied appliances; and to special problems,
closely connected with the subject of water-power, involving pipes,
weirs, and open channels. The experiments of Joukovsky on water-
hammer are presented and the theory of this phenomenon is developed.

The student is supposed to be already well versed in the part of
hydraulics dealing with stationary vessels and pipes, as set- forth (for
instance) in the writer’s Mechanics of Engineering (in referring to which
the abbreviation M. of E. is used).

It is hoped that the book may prove useful to practising engineers
as well as students; in which connection attention is called to the dia-
grams of friction-heads in pipes and those for determining Kutter’s
coefficients for open channels. These have been especially prepared for
the present work and will be found in the Appendix.
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NOTATION AND CONSTANTS.

The Greek letters «, 8, 6, 0, ¢, 4, p, and ¢ are used for angles [¢ also
for a ratio (pp. 25 and 32); ¢ for a coefficient (pp. 105, 174, and
192); and ¢ as a coefficient in weir formulm} ; 7 for efficiency; and
= for the ratio 3.1416.

7 (gamma) is the weight of a unit of volume of fresh water, viz. 62.3
Ibs. per cub. ft. at 62° Fahr. (or 0.03604 Ibs. per cub. inch); but
62.5 (or 1000+ 16) is quite accurate enough for ordinary hydraulic
problems. (Sea water weighs 64 lbs. per cub. ft.)

o (omega) is angular velocity of a rotating body (e.g., radians per
second; in which case revs. per sec. would be w-+2x).

A is Kutter’s coefficient (p. 215).

b is the height of the (ideal) water-barometer. For a pressure of one
standard atmosphere (14.70 lbs. per sq. inch or 2117 Ibs. per sq. ft.)
b is 34 lineal ft.; corresponding to a mercury column of 30 inches,
(nearly 29 95in.). In any actual case the value of b depends on
the weather and the elevation above sea-level. For example, at
6000 ft. above sea-level it might be about 27 ft.

¢, ¢, ¢, ete., are relative velocities of water, on pp. 37, 38, 57-61, and
73-187.

¢ is an absolute velocity (of water) on pp. 1-35 and 62-70.

, v/, w, etc., are linear velocities of points of a revolving body (turbine)
on pp. 1-187. v and ¢= mean velocity of water in pipe or channel
on pp. 188-237.

w, wi, wa, etc., are absolute velocities of water passing through a motor;
but = wetted perimeter, p. 229.

h, H, y, and z are used for vertical heights.

} is the coefficient of fluid friction, pp. 188-237.

lis a Jength.

F is the area of a cross section of the passageway of a turbine, or of pipe
or channel.

u is “velocity of whirl’’ (p. 48).

¥ is “velocity of flow” (p. 172).



vi NOTATION AND CONSTANTS.

L is power (ft.-lbs. per sec., e.g.), or rate of work.

Q (rarely ¢) is the volume of water flowing per unit time in steady flow
(e.g., cubic ft. per sec.; gallons per minute). '

H.P. =horse-power (=ft.-lbs. per sec. power-550).

p is unit pressure; e.g., lbs. per sq. in. (but an acceleration on p. 40,
and the height of a weir on p. 223).

P is a force (or total pressure) (Ibs.); and R, or R’, a resistance (i.e., &
force) (Ibs.). R is “hydraulic radius” on pp. 215, 216.

r, 11, etc., are used for radii; d for diameter (also depth).

s is the slope of the water surfac: in an open channel, p. 214.

G is the total weight of a body.

g is the acceleration of gravity. In the temperate zones we may use,
for all ordinary problems in hydraulics, the value 32.2 (for the
English foot and second as units) (or 386.4 for the inch and second),
as-sufficiently accurate; the error involved being only a small
fraction of one per cent. Near the equator g=32.09 at sea-level,
and 32.06 at 10,000 ft. elevation. It is 32.18 at London and 32.15
at Baltimore; 32.26 at the pole, sea-level. '

One U. 8. gallon of fresh water (see Conversion Scales, in Appendix)
weighs 8.34 Ibs. at ordinary temperatures and has a volume of
231 cub. in. (or 0.1336 cub. ft.). One cub. ft. contains 7.48 U. S.
gallons., (N.B. This gallon measure is in common use in this
country and must not be confused with the English, or Imperial,
gallon, which contains 277.27 cub. in. An English gallon of fresh
water weighs 10 lbs.)
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Letters Names. ’ Letters. Names.

A a Alpha Nvwv Nu

B g Béta E & Xi

ry Gamma 0o Omicron
496 Delta I Pi

E e Epsilon Pp Rho
yANS Zgta 205 Sigma
H Eta Tr Taun

© 93¢0 Théta Tv Upsilon
I 1 Iota D ¢ Phi

K « Kappa X x Chi

A A Lambda Yy Psi

M pu Mu 0N w Omega



HYDRATULIC MOTORS.

CHAPTER 1.
GENERAL CONSIDERATIONS AND PRINCIPAL TYPES OF MOTORS.

1. Water-power.—The descent of water from a higher to a
lower level, through a properly designed machine, suitably
regulated as to speed by the imposing of certain resisting forces
to prevent acceleration of the motion of the machine, may be
made the means of furnishing certain pressures or ‘‘ working
forces,” acting at different parts of the machine, by whose
action a steady or uniform motion of the machine may be kept
up notwithstanding the presence of the resisting forces. In -
such a case the continuous overcoming of the resistances is said
to be accomplished by Water-power, and the machine is called
a Hydraulic Motor.

If the resultant pressure of the water on the machine or
“motor ” is P lbs., and its point of application travels uni-
formly at the rate of v ft. per second in the direction of the force
P, then the power of the water exerted on the machine is the
product Pv ft.-lbs. per second, (which divided by 550 gives
Horse-power;) and if there is but one resistance, of R’ Ibs.,
applied to the motor, and its point of application is forced
to travel backwards (backwards as regards the direction of
pointing of the resistance R’) at the rate of v’ ft. per second,
the power thus expended is R’ ft.-lbs. per second; and we
have the equality

Pv=RY, .. . . . . .. @



2 HYDRAULIC MOTORS, § 2.

since the R’ is supposed to have such a value that the motion
of the machine is not accelerated. (See § 146, M. of E.)

2. Motors of the Gravity, Pressure, and Inertia Types.—
The continuous maintenance of this working force, or pressure,
P, of the water against the motor is due generally, in the last
analysis, to gravity, ie., to the weight of the water; but it is
not necessarily due to the weight of the portions of water
in actual contact with the motor; such is the fact, indeed, (or
nearly so,) in the case of motors carrying detached bodies of
water in buckets, and these may be called pure gravity motors;
but in the case of pressure engines, with slowly moving pistons,
the pressure is kept up by communication with a distant and large
body of water; while with turbines, and with motors utilizing
a “frce jet” (ie., a jet in the open air) of high velocity, the
pressure is occasioned by causing the liquid to flow through
channels or against surfaces of the motor in such a way that
its absolute velocity is diminished by the constraint which the
parts of the motor, if properly designed, exert upon its motion.
This change of absolute velocity is usually accompanied by a
gradual change of direction, to avoid waste of energy. These
latter may be called Inertia Motors.

(In the case of an Inertia motor the water usually gains its
initial absolute velocity, at entrance of the motor, through the
previous action of gravity, though in some cases this velocity
may be due to the action of a pump driven by steam or other
power.) We may therefore distinguish between Gravity Motors,
Pressure Motors, and Ineriia Motors (or Kinetic Motors);
though some belong to more than one of these categories, as
will be seen.

3. Efficiency.—If a motor could be so designed (and regu-
lated) as to use the full supply, @ cu. ft. per second, of a stream,
and also the full “head,” h (feet), or difference of level between
the surface of the water in the ‘““head-water’’ (or pond) and
‘““tail-water’’ (or pool where the water flows away, below the
motor), the maximum theoretical water-power would be equiva-
lent to a working force equal to a weight of Qy Ibs. (y being the
weight of one cubic foot of water) working through & ft., in
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each second of time; i.e., equivalent to Qyh ft.-Ibs. per second;
but the useful power, R'v/, accomplished by a motor at its
very best is always less than this, on account of various kinds
of friction and because the water itself usually leaves the motor
with a certain amount of velocity, thus carrying away, un-
utilized, a corresponding amount of kinetic energy, each second.
The ratio of the power usefully expended, viz., R'?v/, to
the full theoretical maximum, Qyh, is called the Efficiency of
the motor and will be denoted by the symbol » (pronounced
ay-tah); that is, oy
nth.........(2)
4. Example of a Gravity Motor.—A succession of buckets
on an endless chain, confined in their
motion to a vertical plane (the chain
passing over two sprocket-wheels
whose axles revolve in firm hori-
zontal bearings) constitutes a nearly
pure gravity motor. See Fig. 1.
Each bucket as it moves down
receives water at the point A and
loses its contents at B. A resistance
R’ (tension in a rope, e.g., winding
up on drum at C, being of sufficient
value, we have a uniform velocity »
of bucket, that of the rope being .
It will be seen from the figure that
the height h,, from A to B, is a little
less than that, h, from head-water
surface H to tail-water surface at T.
Since the motion of a bucket while
holding water is uniform and recti-
linear, the resultant pressure of the
water within it upon the bucket is equal to the weight of
its contents, which we may call G lbs.
If we consider the buckets, sprocket-wheels, chain, and
drum as a collection of rigid bodies forming a machine, and

Fra. 1.
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apply the method of- “ Work and Energy” (see pp. 149-
153, M. of E.), we note that there is a working force G acting
on each of the n full buckets on the left; that R’ is the only
resistance (axle frictions are here neglected);* and that the
reactions at the bearings are neutral forces in this connection;
and also that there is no change in the kinetic energy of the
moving masses of the collection (by hypothesis) from second
to second. Hence, considering the space of one second of time,
we have

nGv=R"v. .. . . . . .. @3

Let now ¢t=time for a bucket to pass from A to B; then
v="h;+t and

. @_RI,DI

But nG lbs. of water +¢=1bs. passing per second, = volume

. nG
per second X7, ie, ~=Qr,

so that we have finally
Qriv=R"v. . . . . . . . @

Evidently, with greater perfection of design and operation the
quantity Qrh: could approach Qyh but could not exceed it;
hence Qyh is called the full theoretical power of the mill-
site,” and we have for the efficiency the ratio (as before defined)

R'v
n—Q—rTb.........(5)

Numerical Example.—With Q=2 cub. ft. per sec. and h=20ft.,
we have, using the ft.-Ib.-sec. system of units, Qrh=2X%62.5 %20
=2500 ft.-1bs. per second, maximum theoretical power. Hence
if the bucket-motor is so designed as to have an efficiency of
80 per cent and the velocity of cable at C is desired to be v =2
ft. per second, we may put R’v’ =0.80 X 2500 and obtain R’ = 1000
lbs. tension, as the resistance that could be overcome by the
motor at that speed, in steady motion. If the velocity of the
buckets themselves is kept at the value (say) v=3 ft. per

* The weight of the wheels and buckets ls a neutral force, since their
center of gravity neither sinks nor rises.
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second, the radius of the drum C' must be made two thirds of
that of the upper sprocket-wheel.

Strictly, the pressure on a bucket during filling at position
A is a little greater than the weight of the water in it at any
stage of the filling; again, both the filling and the emptying
of any bucket are gradual. These facts are neglected at present,
for simplicity, but will be considered later.

5. Buckets Moving in a Circular Path.—If the buckets are
firmly attached to the rim of a single rigid wheel (revolving in
a vertical plane) and thus constitute a vertical water-wheel,
the resultant pressure on a bucket of the water in it is not equal
to the weight of that water during uniform motion, but the
effect as to power is the same; that is, we shall have Qyh, =R'v
as before; h; being the vertical distance from the point of
filling to that of emptying.

To prove this, in simple fashion, consider (Fig. 2) a heavy
ball of weight G lbs., resting against a plate a7 parallel to the
radial arm nC, and upon another plate, ic, perpendicular to
the same; both plates perpendicular to the vertical plane of
the paper. The arm oC and plates are rigidly fastened to
drum CD and axle K. There is a resistance R’ acting at edge
of drum (tension in a rope, say). The rigid body ainCK is
rotatmg uniformly, the ball with it, counter-clockwise, on axle
K, in (vertical) plane of paper.

 Let 6=the angle between the arm nC and the horizontal
at this instant (or between the plate ic and the vertical). Let
the reaction of plate ai against the ball be a force 7" lbs.; that
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of plate in, N’ Ibs. The only other force acting on the ball
is that of the earth, i.e., its weight, G. The motion of the
center of the ball being curvilinear, in the arc of a circle whose
radius is r, and having a uniform velocity v, in that curve,
we have [from p. 76, M. of E.]

2 (tang. compons.)=0, or Gcosf—T"'=0;
and 2Z(norm. compons.) = (G +g)v? +r;
ie., Gsin 0 —N' = (G +g)(v?+7r).
Hence the value of the pressure 7" against the ball is G cos 6,
while that of N’ is not G sin 6, but is G sin 0—%.

However, when we apply the principle of work and energy
to the rigid body anD for the very short time interval, di, in
which point o passes to o/, describing a path of length ds, while
a short length d¢’, of rope, winds up on the drum, dealing now
with the equals and opposites of N’ and 7", we have, the motion
being uniform,  T".ds+N’Xzero=R'ds'.

But T"=G cos 8 and ds cos 0=0H =dh, = vertical descent
of the center of gravity of the ball in time df, and hence

Gdh=R'ds’, . . . . . . . @

the same as would have been found in the foregoing case of
the bucket-motor for the time df (with nG in place of the
present @); and therefore, for a complete second, we should

have
Qrhi=R'Y; (see later, in the overshot wheel.) . (2)

6. Simple Pressure Engine.—Fig. 3. Here we consider a
single stroke, from left to right, of a piston of area F. sq. ft.,
under water pressure on both sides, from the tanks H (head-
water) and T (tail-water), whose surfaces are h ft. apart,
vertically. The motion is slow and uniform, acceleration
being prevented by the action of a suitable resistance R’ lbs.
against the piston-rod (whose sectional area is small com-
pared with that, F, of the piston). The unit-pressure on the
left face of the piston is p,, (Ibs. per sq. in.), a little less than the
hydrostatic pressure due to the depth HE (plus the outside
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atmospheric pressure p,) on account of the loss of head at
entrance E of communicating orifice, or port. Similarly, the
unit-pressure at m’, on the right-hand face, is py, a little greater
than that due to the vertical depth Tm’ (plus atmosphere).
If piezometric tubes A and B, open to the air, are provided
in the sides of the cylinder, as shown, the heights, y and ¢,
of the stationary water columns in them above the level mm’
will, with atmospheric pressure added, measure the pressures

e ——— - -

Allr——-

“---§ -
Fia. 3.
Pm and p,,r.  The motion of the water is assumed to be a ““ steady
flow,” so that these water columns do not fluctuate in height.
Hence we write
Pmn=Patyr, and pmw=p.+yT;
8o that for steady motion the value of the resistance R’ should

be
R =Flpn—pwl, =Fly-y1=Frh. |

Hence, the work done upon the resistance in one stroke
being R’s, we have Fyshi=R's. . . . . . . . (3

But, if n strokes are made in a unit of time, say one second.
(provision being made, by means of valves and of air-vesscls
and by the employment of more than one cylinder and piston,
for the maintenance of continuous operation and of a practically
“steady flow,”) we have

Work per second, i.e., the power=nFyshy,=R'(ns). . (4)

Now nFs=the volume of water used per unit of time, =(Q,
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and ns=the velocity, v’, of the point of application of the
resistance R’ in the direction of the latter (in general, pro-
jected on the line of action of the resistance); whence the power,
L, of the motor may be written

L=Qrh,=RY. . . . . .. (5

It is evident that h; can never qmte equal 7, though it may
be made to approach it quite closely in the case of this kind of
motor; that is, as before, the ideal maximum power is Qrh,
R
Qrk

We here note that in passing from position E to the point
where it leaves the motor the water has not been subjected to
any notable change in velocity, nor in vertical position; that
is, that between E and m’ there has been no change in kinetic,
nor in potential, energy, but that there has occurred a great
change in the internal fluid pressure; so that this kind of
motor is sometimes described as acting by the surrender on
the part of the water of some of the ‘“pressure energy” pos-
sessed when in position m. But it should be remembered that
these phrases are arbitrary and artificial, being employed
simply for convenience: Some authors use the word potential
energy as including pressure energy. Others would say that
the potential energy contained in the water at H has been
converted into the form of pressure energy at m, since no con-
version into energy of motion (i.e., into kinetic energy) has
taken place at that stage.

Numerical Example.—If a water-pressure engine is working
steadily with a piston speed of v' =8 in. per second, the diameter
of piston being 11.72 in.; with value of h=70 ft., and of h; =64
ft.; we have for the power obtained (denote it by L)

1172 22
3 X 62.5X 64,

=2000 ft.-Ibs. per second or 3.63 horse-power.

and the efficiency =

=QTh17 Fv Thlx

' The quantlty of water used per second is Q=Fv' =0.5 cu. ft.
per second, and the thrust in the piston-rod R’ is L+% or
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2000 +0.666=3000 lbs. (If we neglect the friction on edges
of piston and in stuffing-box). The efficiency 7 is

1= Qrh~ 05x62.5x70 "

or nearly 92 per cent. This might be obtained more easily by
‘putting
p=khi+h; or 64+70; =0.914.

7. A Simple Inertia, or Kinetic, Motor.—It has already been
proved in § 566 of the M. of E. (and will also be shown later in
this work) that if, by provision of a proper resistance R/,
the speed of the cups of an impulse water-wheel, such as a
Pelton or Doble wheel, be regulated to a value of about one
half that of the water in the free ““jet ”” (or jet in the open air)
issuing from a nozzle and opera-
ting upon the cups in succession,
a maximum power is obtained;
that is, we have a maximum
value for the product, Pv, of the
(mean) tangential force (work-
ing force), P, of the jet against
the cups cf the wheel, by the
linear velocity v of these cups,
which is the distance through
which the working force acts 7%}
each second.

Fig. 4 shows such a wheel
in steady operation, supplied
with a free jet issuing from an orifice or nozzle in the side of a
reservoir whose upper surface is h, ft. above the center of nozzle,
The velocity, ¢, of the jet, since it is a free jet, is practically the
same as if the wheel were not in position and has a value
(see §496, M. of E.) of c=¢V'2gh,, where ¢ is the co-
efficient of velocity for the nozzle in question.

For uniform motion of the wheel, R’ being the resistance
applied to the rim of the smaller wheel (on same shaft) where
the velocity is +’, we must have, from the theory of work and
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energy applied to the uniform motion of this rigid body,
Pv=R'vY. But from p. 808, eq. (7), M. of E., we have, for

2Qr(c—v)

a series of cups, the value* of P, viz., P= , where

Q,=Fc, is the volume of water passing per second from the
nozzle. (F =the sectional area of the jet.)
Hence the power expended on R’, R'v/, or exerted by P,

is (after writing % for », for maximum power; see p. 808, 1.

of E.)
c2
. 'é',

L——-Pv=% =Rv. . . ... Q)

Or, substituting from the equation c=¢Vv/2gh;,
L=RY,=8Qrhi. . . . . . . @

As the action of the water on the cups is more or less imperfect,
the usual power (R'v') obtained in practice is rarely more than
80 per cent. of this last expression. If this imperfection of
action could be neglected and the value of ¢ taken as unity,
with h; approximating to h (the total vertical distance between
head- and tail-water surfaces), the theoretical ideal maximum
power of the motor would be Qrh, ft.-lbs. per sec., as in the
other cases already instanced.
As before, the efficiency would be
R'v
nth.........(3)

Here we may say that the total power of the mill-site Qyh
(ft.-lbs per sec.), ie., Qr j—g, (if ¢ be unity,) has been converted

2
into the kinetic form _Qg_)‘% (or, mass per second X half-square
of the velocity of jet) at the point where the water is about
to act on the motor; so that this kind of motor utilizes the
energy of the mill-site in the kinetic form. At the point of
leaving the motor the water is at the same level as at entrance,

and is under the same pressure (atmospheric pressure) as at
* This value of P is also proved in this book. (See eq. (6), p. 66, with a
180°.)
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entrance, but has practically lost all its velocity (when cups
have proper speed).

Numerical Example.—With a head, h;, of 100 ft. and a
value 0.95 for ¢, we have for the velocity of the jet (free
jet) ¢=0.95X4/2x32.2X100, or 76.23 ft. per second. If
the mill-site furnishes Q=2 cu. ft. of water per second, the
kinetic power (i.e., kinetic energy per second) of the jet just
before impinging on the cups of the wheel is

Qr ¢ _2X62.5 (76.23)?,

g 2" 322 T 2

ie., 1128 ft.-lbs. per second. If the impulse wheel utilizing
this jet has an efficiency of 80 per cent., the useful power ob-
tained will be L’,=R'v',=0.80X 1128 =9024 ft.-lbs. per second;
for which result the speed of the cups must be maintained
at the proper value, viz., ¢+2, or 38.1 ft. per second. To keep
the speed of the cups from accelerating beyond this figure
the value of the resistance R’, if it is to act on a periphery of
the wheel having (say) half the radius of that described by
the center of the cups, will need to be

R =L"+1v=9024+19.05=473 Ibs. (The value of P is 236 1bs.)

In the case of an impulse wheel the efficiency is usually
referred to Qrh; instead of Qyh (see Fig. 4).

8. Mixed Types of Motors.—It will be seen_later that in
the working of some kinds of motors (like the class termed
“reaction-turbines ”’) the water is not only under pressure
in closed spaces at the entrance of the motor channels, but may
have considerable velocity as well. In other words, the energy
of the water at entrance is partly in the pressure form and
partly in the kinetic. It will therefore be of interest and
advantage to prove a general theorem of such a form as to
bring into play all three of the quantities pressure, velocity,
and elevation (above a convenient datum) of the point where
the water enters the motor, or just before; and also similar
quantities at the point of exit from the motor, or just down-
stream from such a point, as follows:
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9. General Theorem for the Power Derived from any Hy-
draulic Motor in Steady Operation.—This will apply, what-
ever the nature of the motor may be (piston-motor, rotary
motor, or what not) so long as its operation is smooth and
steady, with uniform motion of the parts and a steady flow
on the part of the water at rate of Q cu. ft. per sec. Fig. 5
shows a casing M, within which a water-motor is working.
Water enters at n through a pipe AB, shown in longitudinal
section, and leaves the motor at m through the pipe EL. All
pipes are supposed full of water, as also all chambers, cells,
or passageways of the motor, which is composed of rigid
parts. Piezometers P, and P, being supposed inserted in
the walls of the pipes at AC (up-stream pipe) and EK (down-
stream pipe), the internal fluid pressure at point n, viz., P,
will be indicated by the height, y., of the stationary water
column (plus the atmospheric pressure, since the piezometer is
an open one). That is, with p, for atmospheric (unit) pressure,
we have p,=p.+ynr; and likewise at the point m the internal
fluid pressure iS pm=pa+ymy. The mean velocity of the
water in the cross-section of the pipe at n may be called v,;
and that at m, vm. The height of n above the datum plane
in figure will be called z,; that of m, z,. Elevation of n
above m=h’; and the difference of elevation of the summits
of the two piezometer columns, A.

The power of the motor is considered to be applied to the
overcoming of a constant resistance, R’ lbs., in the form of
the tension in a rope or cable the velocity of any point of which
is constant and is denoted by /. That is, the cable is being
wound upon a drum at a uniform rate. The value of R’ is
supposed to be such that the motion of the motor and of the
water passing through is ¢ steady,” so that no part of the motor
has any acceleration and the values of pn, pm, va, and vm,
and also that of Q (cubic feet per second, rate of flow of the
water) remain constant. The sectional areas of the two pipes
at n and m are F, and F,, respectively; whence we have
Q="F,v,; and also Q=F,vn.

We are now to consider the assemblage, or collection, of
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rigid bodies consisting of all the particles of water between
the sectional plane AB of the inlet-pipe and that, EL, of the
outlet-pipe, together with all the moving parts of the motor
itself (including the cable up to the point where R’ is applied
(see Fig. 5). To the range of motion of this collection of
rigid bodies which takes place during a short time, dt seconds,
let us apply the general Theorem of Work and Energy as proved
in § 142, p. 149, of M. of E. In this theorem the work done
by, or upon, those forces only which are external to the bodies
concerned need be considered, pressures between any two
bodies of the collection being totally ignored unless of the
nature of friction. Both internal and external frictions must
be considered, each internal friction (i.e., friction between
any two members of the collection) must be multiplied by
the proper distance of relative travel. Any external force
whose point of application moves at right angles to the line
of the force is ‘“neutral,” i.e., does no work.

Items of Work.—During the small time, df seconds, here
considered, the pressure on the bounding plane AB, viz.,
F.p,lbs., is a working force and works through the small dis-
tance ds,,=BD, the work so done being F,p,ds,, while section
AB is moving to a new position CD. Similarly, the resisting
pressure F,p, on the down-stream bounding plane (as if
it were the face of a piston) EL, at m, is overcome through a
corresponding small distance dsm, =LH ; i.e., the work Fnpmdsm
is spent upon this resistance. The resistance R’ is overcome
through some small distance, ds’ (amount of cable wound up
in time df). The work expended on external friction, such
as axle, or shaft, friction, will be indicated by 2 (R"ds’), while
that of internal friction (of the water on itself or between
the water and the moving blades or pistons of the motor) by
Z(R"8s""). During the motion of this collection of rigid
bodies in time df, the center of gravity of the portion of water
now being considered, situated initially between AB and EL,
the weight of which we may call G lbs., sinks from some posi-
tion a to some lower position b. Denote the length of the ver-
tical projection of this distance a . . b by dh (feet). This gravity-
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force, G, does the work G-dh. When the plane AB arrives
at CD (and, correspondingly, plane EL reaches position KH)
there is as much water, and in the same position, between
CD and EL as there was before, and the weight of the lamina
AD equals that of lamina EH (viz., F.ds,y=F.dsmy); hence
the product of weight Fnds.y by the vertical height ' (=2z,—2zm)
is equal to that of weight G by dh (see § 32 for more detailed
proof) and may replace it. Therefore, finally, the expression
for the aggregate work done (posmve and negative) in the
time dt is 5 ;

d’V=ann n _Fmpmdsm + (Fndsnr) (Zn_zm) —R'ds
—Z(R"ds") —Z(R”’ds"’). (1)

It still remains to formulate the change that occurs during
this time dt in the amount of kinetic energy possessed by the -
moving rigid bodies of the collection considered. Since the
motion of all the parts of the motor itself is uniform, such
change for them will be zero. As for the (rigid) particles of
liquid concerned, consider all the particles of water between
AB and EL to be divided into a vast number of contiguous
groups, of equal volumes, each group having a volume equal
to that of the lamina ACDB, this lamina being the first group
of the series and having a mass=dM,=F,ds.y +g¢; these groups
being so selected that in the short time dt the velocity of all
the particles in any group shall have acquired a new value
just equal to that which the particles of the group next ahead
had at the beginning of the dt. It follows, therefore, from
the definition of ‘‘steady flow " (see p. 648 M. of E.) that in

subtracting the initial kinetic energy(-—-— »from the final,

for each group of particles, and adding up these results for all
the groups, from the first, AD, to the last, EH, (whose right-
hand face is at EL at the beginning of the dt,) all the terms
involved will cancel out except the initial kinetic energy of the
first group (or lamina) and the final kinetic energy of the last
group. That is to say, the result for the aggregate change in the
kinetic energy of all the bodies of the collection, in time dt, is
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FmdSmT 'vm2 Fndsnr vnz
g 2 g oot (#)]

Equating the expressions for dW and d(K.E.), and re-
placing F,ds» (and also its equal Fnds,) by Q-dt (the volume
flowing in time df) and then dividing through by d¢, noting
that ds’+dt=1/, the velocity of a point in the cable, while v
is the velocity of the rubbing parts for any friction_such as
R”, and v” has a similar meaning (relative velocity) for any
internal fricticn, R'”’, we have, finally,

V2 Pn Vm2 Pm
o (g+2+2) - (54 2m )]
=Rlvl+2(Rllvll)+2‘(Rlll,vII’). (3)
(Each side of this equation is jt.-lbs. per second; power.)

R'v may be called the useful power of the motor and the
other items, X (R’v"’) and Z(R'’v'"), the lost power, or that
wasted in friction. We may therefore say that the power
of the motor, partly spent in the useful power, R’v/, and the
remainder wasted in the work of friction (both of fluid friction
and that between solids) is equal to the product cf the weight
Qr (Ibs. of water used per second) by the difference between
the sum of the three heads (viz., velocity-head, pressure-head,
and potential-head or elevation above datum) at the point of
entrance to the motor, and the sum of those at the point of
exit therefrom.

d(K.E),=

Just as %Z %2 is called the kinetic energy of the mass %

of water, as due to its velocity v, and Qyz its potential energy
due to elevation above datum, similarly Qr%) may be called

the “ pressure-energy,” due to internal fluid pressure; (a mere
name, however; useful when the flow s steady; this would
not imply that a receiver full of stationary water under pressure
possessed thereby more than a trifling amount of energy, due
to its pressure.)

Hence eq. (3) might be reread as follows: The amount
of energy (of the three kinds defined) lost during passage
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through the motor by the weight (say lbs.) of water used per
second, is equal to the power spent by the motor on the useful
resistance and the various frictional resistances.

In actual practice, with a good motor run at proper speed,
the useful power, R’v/, may be as much as 85 per cent. of the
power given up by the water; i.e., may be 85 per cent. of the
sum of the useful power and the power wasted in friction (this
latter part reappears in the form of heat).

[N.B. Evidently, if no motor is placed in the line of pipe
between n and m, R'v' and R"'v" disappear and we have from
eq. (3) Bernoulli’s Theorem for steady flow in a stationary
rigid pipe, the loss of head between n and m being represented
b Z(R'”’I)’")

Y7o

10. Another Form of Equation (3).—In Fig. 5 we may
note the following relations (b being the height of the water
barometer, or about 34 ft.):

%=yn+b, and p7"'=ym+b;
also K +yn=ym+h, and z,—zm=h.

h denotes the vertical distance, or ‘“‘drop,” from the summit
of the up-stream piezometer column, at A4, to that in the lower,
at E. Eq. (3) may now be written in the form
’ v"2 1),,,2>]_ ’ 11,0401 110,001
Q7[h+<2g ~2g =RV +Z([R")+ZR"Y"). . 4
Hence, if the entrance- and exit-pipes were equal in sectional
area, thus making v, equal to v,,, we should have

Qrh=RV+ZR"Y)+ZR"V"). . . . (5)

11. Numerical Example of Foregoing.—In a test of a hy-
draulic motor it is found that when a value of R’ (friction of
a brake on pulley) of 240 lbs. is furnished for the motor to
work against, on the rim of a pulley of r=1 ft. radius keyed
upon the shaft of motor, the uniform speed to which the motor
adjusts itself is =306 revs. per minute, the consumption of
water is Q=1.2 cu. ft. per second, while the pressure-gauge
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readings at n and m respectively (see Fig. 5) are 56 lbs., and
6 lbs., per sq. in., above the atmosphere. The point n in the
supply-pipe, which is 4 in. in diameter, is at an elevation of
4 ft. above the point m in the discharge- or ‘““exit ”’-pipe, 6 in.
in diameter.

Required the useful power, R’v/, and the efficiency of the
motor, 7, at this speed.

Solution.—Here we have (see Fig. 5), using ft., lb., and
second,

h_[4, s6x144 1 [6x144
- 625 7625

Also, v,.=Q+F..=1.2O+[Z(1—2> ]=13.7 ft. per sec.,
nf6)\2
and v,,.=Q+F =1'20+[I e ]=6.1 ft. per sec.;

whence 2%—2 .91 ft., and 2'1-—0 58 ft.

+b] 119.7 ft.

Hence

2
Qr[h+— ——] 1.20 X 62.5[119.7 +2.91 —0.58]

=9290 ft.-l1bs. per sec.
=energy given up by the water each second in passing through
the motor.
Now the useful power being R'v, viz.,

R'W,=R’(2xrn), =240 X 27 X 1 X 5.10 = 7690 ft.-lbs. per sec.,

it follows that in this test, at speed of 306 revs. per minute,
the motor developed an efficiency of 83 per cent.; since

Rv 7690
Qr[h l__] ~9200

The difference between the 9290 and the 7690, i.e., 1600 ft.-
Ibs. per second, is, of course, the value of the lost power (heat);
amounting to some 17 per cent. of the power given up by
the water. At other speeds, to secure which the value of
R’ would have to be changed to various other values, succes-

=0.83.
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gively, the efficiency would be different; and it is usually an
important object in the testing of a motor to ascertain at
what speed it develops the greatest efficiency, this speed being
the ‘“best speed” for its operation. The quantity of water
used per second, @, may, or may not, be the same at different
speeds; this depending on the kind of motor employed.

12. Pump, instead of Motor.—In this connection it will
be of advantage to consider another kind of test. In Fig. 5
conceive a pump of some kind, say a centrifugal pump, the
theory of which will be presented later, to be placed inside
of the casing M and to be operated by the application of work-
ing force P lbs., applied tangentially to the periphery of a
pulley (radius=r) keyed upon the shaft. If the rim of this
pulley travels with a velocity » and the force P is the tension
in an unwinding cable (or perhaps the tangential component
of the pressure of a pinion-tooth against the tooth of a gear-
wheel), the power applied in working the pump will be P ft.-1bs.
per second, and water will be caused to pass in steady flow
through the pump from point m, in what is now an inlet-pipe,
to point n in the pipe AB (now a discharge-pipe); that is,
from a point where the pressure-head, velocity-head, and poten-

Pm Un?

tial-head are —, E’;, and zm, respectively, to a point n where

the sum of the corresponding heads is greater than at m. (v,
and v, now point to left.)

If Q is the volume of water pumped per second, it is easily
proved, by the same method as that just followed in § 9 (con-
sidering that in the present case P and F,p., are working
forces, and F,p, and G resistances), that
Pv—Z(R”v”) —Z(R”’v’”)

=Q [( +B +z,.> (2g +p_;+z">]

or, more conveniently, that
Py= Qr[h + (L - %)] +ZRV)+ZR"Y"). . (1)

Here, as before, 3(R""v'"’) denotes the power lost in fluid
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friction, whether in the passages of the pump or in portions of
the stationary pipes between m and n; while S (R"v") is the
power lost in friction between the solid parts.

Eq. (1) declares that, of the applied power Pv necessary
from some external source (such as a steam-engine or water-
wheel) to operate the pump at a certain uniform speed, the
portions X (R”v’) and Z(R"'v") (ft.-lbs. per sec.) are lost,

2
or wasted; while the remainder, i.e., Qr[h+——v29] is use-

fully employed in pumping water. The efficiency of the pump
is the ratio, or fraction,

0.2
_ _useful power QT[ + g]

power applied Pv re 2)
. P,v — 2 Rllvll + 2‘ R’I'vlll
or 7= [ P)v ( )]. N )]

13. Example of Test of Pump.—The following example
represents very nearly the case of a test of a centrifugal pump
used on a hydraulic dredge on the Mississippi River. (See
pp- 136 to 167 of the Report of the Mississippi River Com-
mission for 1903.) Although reference is now made to Fig. 5,
it must be understood that the direction of flow of the water
is from m toward n, and that in the place of a resistance R’
we now have a working force P; the direction of motion of the
cable (if we conceive that to be the manner of operating the
pump-shaft) being the same as that of the force P.

From gauges inserted in the sides of the entrance-pipe (or
“suction-pipe”) at m and of the discharge-pipe at =, close to
the pump-casing, and various other measuring appliances,
the following data were obtained:

Pmn=3 lbs. per sq. in. below the atmosphere
Pn= 4.1 ¢« “ above ‘¢

Ym=13 ft. per sec., hence —;——2 7 ft.;

= TR T 143 .
v =13.7 2g 2.9 ft.



§ 13. GENERAL THEOREM FOR HYDRAULIC MOTORS. 21

The delivery-point n was (h’=) 3 ft. higher than entry
point m. @Q=86.7 cub. ft. per sec.

The steam-engine driving the pump was found to expend
power in so doing at the rate (net) of 280 horse-power. There-
fore Pv=280X550 = 154,000 ft.-lbs. per second.

It will be noted that the pressure at m was 3 lbs. per sq. in.
below atmospheric pressure; in other words, the height yn
of Fig. 5 is negative. This value, 3 1bs. per sq. in., corresponds
to a piezometric height of 6.95 ft. and hence the value of h
(height from summit to summit of piezometer columns in
Fig. 5) will be 9.5 +3+6.95, =19.45 ft.

Hence the power expended in pumping water is

2
Qr[h +o-— ——5 ] =86.7 X62.5[19.45+2.9—2.7]
=105,400 ft.-1bs. per second;

while the power exerted in running the pump is, as before,
154,000 ft.-lbs. per sec. Hence, for the efficiency of the pump
in this trial, we find

105,400
1= 154,000

=(0.685; or 68% per cent.



CHAPTER I1.
GraviTY MOTORS.

14. The Overshot Water-wheel.—This form of hydraulic
motor, with others of the same type, though now nearly obso-
lete, will be given a few pages in the present work. Fig. 6
(from Weisbach’s Mechanics) represents a wooden wheel of
this class, revolving in a vertical plane on an axle in firm bear-
ings. As seen from the figure it consists of two ring-shaped
shroudings, or crowns, connected with the axle by radial
arms, and a number of floats or buckets inserted between the
crowns and forming, with them and a cylindrical boarding
concentric with the axle, a series of cells. The water is sup-
plied from a sluice or pen-trough near the top of the wheel,
and is regulated by a gate, falling in a sheet, or jet, into the
third or fourth bucket from the summit. These wheels have
been constructed for falls of from 4 to 70 ft., sometimes re-
ceiving as much as Q=50 cub. ft. of water per second; and
of from 3 to 50 or more horse-power. With high falls and
a large supply of water it is better to use two or more small
wheels rather than a single large one, whose necessarily great
weight would be a disadvantage. The fall ismeasured from the
surface in the supply channel, or pen-trough, to that of the tail-
water. To lose the least head possible the wheel should hang
just tangent to the tail-water; or, if the level of the latter
is variable, high enough to avoid contact. In Fig. 6 H is
the axle, B and C its gudgeons; DMF, D’M'F’, the crowns,
or shroudings, made in 8 to 16 segments and from 3 to 5 in.

thick, and fastened to each other by cross tie-bolts which
22
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also pass through the arms. The cog-wheel E serves to transmit
the power to the machinery. :

More elaborate wheels of this class have been built of iron,
with sheet-iron floats.

Fia. 6.

15. Theory of the Overshot Wheel.—In Fig. 6a we have a
vertical section of a wheel of this kind, revolving counter-
clockwise with uniform motion and overcoming the resistance
R’ at the rim of the gear-wheel A. The (uniform) velocity
of the buckets should not exceed 5 ft. per second for small
wheels, nor 10 ft. per sec. for high overshots. Otherwise the
water would spill prematurely from the buckets and also carry
away with it, unutilized, too great an amount of kinetic cnergy.

Each bucket is filled on passing some position E at a con-
venient, angle 6 with the vertical; the jet entering it having a
velocity c1="'2ghi, nearly; (say =0.95v2gh;). The height
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of wheel is nearly equal to h, the fall or vertical ‘“head ”’ from
head-water, H, to tail-water, T'.

If the various dimensions of the wheel, the quantity of
water used per second (Q), the velocity of rotation of the
wheel, and the resistance R’ (lbs.) tangent to the rim of the
gear-wheel A, are properly adjusted to each other, the motion
remains uniform and the work per second done by the pressure
of the water on the walls of the buckets or cells will (if we
neglect axle friction) be equal to that spent per second (viz.,

R'Y ft.-Ibs. per sec.) on the resistance (v being the velocity
of the rim of wheel A). For example, R’ may be the resisting
pressure of the teeth of a pinion keyed on another shaft operat-
ing the machinery of a mill. The buckets should be of such
shape and size, in connection with the proper speed, as to
enable each cell to hold its contents as long as possible before
reaching the lowest position. N shows the point where spill-
ing begins, and K the position where the cell has completely
emptied itself. During the filling of a cell under the jet the
pressure against the cell walls is greater (for equal amounts
of water) than it is later when the cell has passed the jet, since
the water which first enters receives thereafter the impact
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of the jet, without being driven out of the cell. The power
due to this extra pressure is called the power due to impact.
Its total amount is much less than that due to the steady
action of the weight of the water after the cell has passed the
jet, as will be seen.

16. Power Due to the Weight of the Water.—E may be
taken as the point where the full action of the weight of the
water begins, just after the mouth of the bucket has passed
the jet. Let a; denote the radius of the “division circle ”
(dotted in figure) or circle half way out along the radial depth
of a cell; a the radius of the outer edge of cell; 6, A, and A,
the various angles marked in the figure. The whole fall, A,
or vertical distance between the surfaces of the head- and
tail-waters, H and T, may be considered to be made up of
four parts, viz., h;, serving to generate the velocity attained by
1.1c%
29’
a part, E to N, or hg,=a; cosf+asind; a part, N to K, or
h3,=asin 4, —a sin A; the remainder being hs.

The power due to the weight of the water in the buckets
" may now be written as the product of Qr lbs. per second by
the height kg throughout which there is no spilling, plus the
product of a certain fraction (=dQr) of Qr by the height hg
‘throughout which, on account of the progressive spilling, the
average weight of water in action per sec. is dQy. (On the
average,  may be put =0.50.) We thus obtain, for the power
due to the weight of the water,

Ly=Qiha+0hs]. . . (ftAbs. per sec). . . . (1)

17. Power Due to Impact.—As already stated, the pressure
on the bottom of a cell, while water from the jet is entering,
is greater than the weight of the amount of water so far
entered, on account of the impact of the jet, so that the work
per second done upon this part of the wheel is at a greater rate
than if weight were the sole cause of the pressure on the cell.

This extra pressure, and corresponding power, due to impact
will now be evaluated; it being borne in mind that the particles

the jet just before entering a cell, ie., O to E, or hy=——
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of water impinging on the water already in the cell do not fly
out of the cell after the impact, but join the water already in
the cell and move on with it, and with the same velocity.
(See Fig. 7.) The tangential component of the force of impact
at the division circle, OA4,

M /;' B where the impact may be con-

,/, :;—;— ~~_ sidered to take place, may be

. ,A -— computed thus: Let v, =the

3 ~.. . o .
! - ~ velocity of a point of a cell in
,..7\.
S KB ——# fy ., the circumference of the divi-
T 4 NP "\, sion circle, and ¢, the absolute
' @, velocxty of the particles of the

jet where it intersects that circle.
ai=included angle.  During
each small space of time 4¢ a
small mass, 4m, of liquid has its
velocity in the tangential direc-
tion OT changed from c; cos a; to v;; ie., its motion in that

. . . . C1 COS ay; —v;
direction suffers a negative acceleration of =g

.Q-
oo

2
N

G.

therefore the retarding force must be '
' dm
Py =massXacc.=4m . p=—-(c1 cos & —),

which is also equal and opposite to the force in direction OT
Am QlT

9
=the mass of water arriving per unit of time in the bucket.
Hence this force or pressure can be written

with which the mass 4m presses the bucket. But — -

P, = %[cl cos ay —1;]; (Ibs.)

This is simply the continuous pressure, or working force,
acting on the bucket, due to impact. The work done by it
each second, ie., the power steadily obtained from the im-
pact, for each bucket in turn, is obtained by multiplying the
force by the distance v, through which it works in each second
in its own direction. Therefore, so long as a bucket receives

|
|
|



§ 18. OVERSHOT WHEELS. g

water, the work done upon it by impact is at the rate of Pin
per unit of time; ie., the power due to impact

=[Q17+gllc1 cos a1 —v ]y ft.-lbs. per sec. .. . (2)

for each bucket in turn. But the portion of jet intercepted
between the edges of two consecutive buckets is free to do
work on the forward of the two while other work is being
done on the hinder one; hence, if @=the volume of water
passing the pen-trough H per unit of time, the rate of work,
or power, in the long run, due to impact, is found by replacing
the @ of the last equation by @; thus

L1=%’[61 COS~(¥1—1)1]’I)1. e e e e (3)

If now we make v, variable, we find by Calculus that L, is
a maximum when v; =%¢; cos a;, and therefore, by substitu-
tion,
612
le""=Q7§g—} .decosfay, . . . . . (4

. 1 Qr c?
which, even for a; =0, would only =3 2 only one half
of the kinetic energy of the water supply before impact; and
this is the maximum effect of impact.

Hence it is an object to use but a small portion of the total
fall to impart entrance-velocity to the water. We also note
that if the entrance-velocity is kept small, as above advised,
and if the best effect of impact is obtained for v,=4c;, (nearly),
v, itself must be quite small. Hence a slow velocity tends
to greater efficiency of the wheel, in this respect. There must
be a limit, however, for a slow motion requires a greater width
of wheel to accommodate the water, with a consequent increase
of weight, the axle friction occasioned by which would, beyond
a certain limit, consume more power than that gained by the
slow motion; whence the limiting values of velocity mentione
in § 15. ‘

18. Total Power of Overshot.—Adding the two items of
power just obtained, viz., L, and L,, due to gravity and im-
- pact, respectively, we have, as the total power, L, '
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L- Q[w+hz+8h3] .6

ft.-lbs. per sec. 'The efficiency is n=L+Qyh, if axle friction be
neglected.

19. Numerical Example of Overshot.—Let the whole fall,
h, be 32 ft., and let 30 ft. be adopted for the diameter of the
wheel, with Q=10 cub. ft. per second as the available water
supply. Let the radius of the division circle be a;=14.5 ft.
and the angles 6, 4, 4;, and a; be respectively equal to 20°,
46°, 70°, and 12°; (see Figs. 6a and 7.) Compute the power
of the wheel, if 3 ft. be taken as h;, and the value of 4 as 0.5.

With foregoing data we have, for the entrance-velocity
of jet, ¢1,=0.95V2ghi,=0.95V644Xx3=13.1 ft. per sec.;
whence v; should be 13.1+2,=6.5 ft. per second, for best
effect of impact.

The fall with full buckets is then found to be

ha,=a; cos 20° +a sin 46°,=14.5X0.94+15X0.719,
=13.62+10.78 =24.40 ft.
Also, hz=a(sin 70° —sin 46°) =15(0.940 —0.719)
=15x0.221=3.31 ft.
We have, then, for the total power, from eq. (5) of § 18,

L=10x62.5[ 21020 6.5)6.5 +osa0+ 3]

=10X62.5[1.27 +24.40 + 1.65]= 10 X 62.5 X 27.32
=17,075 ft.-lbs. per sec.,=31.0 H.P»

If there were no axle friction, nor resistance due to the
atmosphere, this power would be equal to R'v' (R’ being the
useful resistance, at edge of gear-wheel, and v the velocity
of that edge). If the radius of the gear-wheel is 3 ft., the value

of v is 14:13 R of vy, or v'=1.34 ft. per sec. From R'v'=17,075,

we have R'=17,075+1.34=12,700 lbs.

But the weight of the wheel and the water in the buckets
and R’ itself (unless the latter pointed upward, as it would
do if on the other side of the shaft from its position in Fig. 6)
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would occasion considerable axle friction. For example, if
the total pressure on the main bearings of the shaft were
30,000 lbs., and the coefficient of axle friction were 0.10, the
total friction would be R”, (=0.10X%30,000,) =3000 lbs. Sup-
posing the diameter of each journal to be 6 in., we find that
its circumference would rub against the bearing at a velocity
of (4+14.5)6.5,=0.113 ft. per second,=v". Hence the product

R"v",=3000x0.113, =339 ft.-lbs. per second,

would be the power lost through this cause. This friction
being considered, therefore, we put

L,=17,075,=R'v + R”v"’, and obtain
R =17,075 —339=16,736 ft.-lbs. per sec.;

that is, with v/ =1.34 ft. per sec., R'=12,500 lbs.

As to the efficiency of the overshot wheel in this example,
the full theoretical power of the mill-site being Qrh=10X62.5
X 32, or 20,000 ft.-1bs. per sec., we derive for the efficiency,

R'vY 16,736

n—Q—Th—zm—O .836, or 834 per cent.

It is seen from the above figures that the lowest point of
the wheel hangs about 0.5 ft. above the surface of the tail-
water.

19a. Special Overshots.—The largest overshot ever built is
the Laxey wheel, 72 ft. in diameter, on the Isle of Man,
England; developing some 150 horse-power and operating
pumps for draining a lead-mine (see pp. 214 and 219 of Cassier’s
Magazine for July 1894). The largest wheel of this kind in
the United States is at the Burden Iron Co.’s works, Troy,
N. Y. Its diameter is 62 ft. and width 22 ft. and its weight
230 tons, 550 H.P. being developed. The great ‘ sand-wheels ”
of the Calpmet and Hecla Mining Co., at their stamp-mills in
Lake Linden, Mich., are practically reversed overshot wheels,
with buckdts on the rim, by means of which, driven by suitable
power, sanid and water are elevated. The diameter of each
is 54 ft., apd width 11 ft. (Cassier’s Mag., July 1894, pp. 217
and 218).| These wheels, as also the Burden wheel above
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mentioned, have rims supported by tension spokes, somewhat
as bicycle wheels are constructed.

Space cannot be given in the present work for developing
formuls and rules for designing the form and number of buckets;
to which end simple geometrical and mechanical principles
apply, the main point being to have the cells.only partly filled,
that spilling may occur as late as possible. The parabolic
path of the jet issuing from the head-basin, or pen-trough,
must also be considered in arranging for the proper position
of the sheet or jet entering the buckets. For details of this
kind the reader is referred to Weisbach’s ‘“ Hydraulic Motors,”
translated by Prof. Du Bois.

Values of efficiency as high as 80 per cent. have been reached
by well-designed overshots, but their construction has been dis-
continued for many years.

20, Breast or Middleshot Wheels,.—Wheels revolving in a
vertical plane and having buckets or floats receiving the water
at, or near, the level of the axle are called middleshot wheels;
and if set in a flume closely fitting the water-holding arc, Breast
wheels. The “apron” or surface of the flume fitting the wheel
should not be more than 4 to 1 in. from the circumference of
the wheel, that but little water may escape. Instead of buckets,
simple radial floats are generally used, sometimes slightly curved
backwards near the circumference, to diminish resistance on
rising from the tail-water.

A large number of floats is effective, not only because the
loss of water between wheel and apron is smaller, but because,
from the smaller interval between them, the impact head is
smaller and the vertical distance through which the water
acts by gravity is greater. Generally the outer distance be-
tween two consecutive floats is made =d=the width of the
shroudings, i.e., from 10 to 12 inches.

It is essential that middleshot wheels should be well ‘ venti-
lated,” that is, provision should be made for the passage of
the air from the bucket-space toward the inside of the wheel;
since the water on entering the wheel fills nearly the whole
cross-section between the floats, thus preventing the ready
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" escape of the air outwardly. This is all the more necessary
from the fact that the shrouding-space of these wheels is filled
to one third or one half of its capacity. Breast wheels are in
use on falls of 5 to 15 ft.,
and using from 5 to 80
cub. ft. per second.

The water may be in-
troduced either by means
of an overfall weir, or
through a sluice-weir, with
gates. Fig.. 8 shows a
vertical section of a breast
wheel in which the former
method has been adopted.
If ho is the “head on the
weir,”” or depth over the
sill, while ‘e is the width of the overfall (same as that of the
wheel), and @ the volume of water used per second, we have
(from p. 683, M. of E.)

Q’%.ﬂeho\/Tho; B ¢ )

whence the required depth of the overfall (measured from the
surface of still water 3 or 4 feet back of the weir) will be

Fia. 8.

;w\@] .. @

The value of the coefficient x varies from about 0.60 for
a sharp-edged sill ‘at upper edge of a vertical plate, to 0.80
or more for a rounded sill. In the wheel in Fig. 8 the sill, 4,
is adjustable, to suit different stages of water.

21. Power of Breast Wheels.—As in the case of the over-
shot, the work per unit of time is due partly to impact at en-
trance, but chiefly to the weight of the water after entrance.
The whole fall h (see Fig. 8) may be divided into two parts,
of which the upper, hy, is the vertical distance from the surface
of the head-water to the point of impact of the water on a
. float; while i; may denote the remaining lower portion. As
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in the case of the overshot, let ¢; be the velocity [¢; =0.95v 2gh, }
of the water just before impinging on a bucket, at the‘ division
circle,” and v, the velocity of a point of the float in the “ divi-
sion circle ”” (see § 16). Also let 0Qy denote the value of the
effective weight (per second) of the water acting on the floats
throughout the height h;. The angle between ¢; and v, is a;.
We may therefore, by the same reasoning as in the case of
the overshot, write the work done upon the wheel per second
by the action of the water, both by impact and by weight,

L=Qr[(c‘L‘;‘_"‘M+sh2} B

As to the value of the ratio 6, Weisbach gives an example in
which he makes application of his method of computation to
a wheel where the distance between the apron and the edge
of the floats is % in. (§ 209, Vol. II), obtaining §=0.93. In
other cases where this distance is larger than % in., as with
wooden wheels, & would be smaller, since the volume of water
escaping between the apron and float-edges would be propor-
tionally greater.

22. Modern Breast Wheels.—In Figs. 9 and 10 (on p. 33)
are shown two varieties of breast wheel as manufactured by
the firm of A. Wetzig, Wittenberg, Germany. That in Fig. 9
is constructed mainly of iron; the other of wood. The iron
wheel is intended for flows of as much as 200 cub. ft. per sec.
and for low heads of 2 to 6 ft.; while the wooden wheel is to
be used for heads of 8 to 25 ft., with flows of 3 to 35 cub. ft.
per second. A fuller description will be found in Engineering
News of Nov. 27, 1902, p. 436. On the left in Fig. 9 is seen
an ‘“emergency gate,” capable of falling quickly into position
by the release of a rope.

In the first half of the nineteenth century breast wheels
were very common in New England, but were gradually dis-
placed by the turbine.

23. High Breast Wheels, or Back-pitch Wheels.—This name
is given to wheels with buckets, like the overshot, but receiving
the water between the level of the axle and the summit of the
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wheel. They are also set in a flume like ordinary breast wheels;
and are peculiarly well adapted to situations where the surface-
level of the head-water is liable to change, the gate being
adjustable to different heads, and heights of orifice. To pro-
vide for the easy escape of air from the bucket as the water
enters, “ventilation” is often resorted to, and is especially
necessary in the case of these wheels. This was first proposed
by Fairbairn, in one instance furnishing a saving of 3 per cent.
of power, by actual experiment. See § 20.

24. Efficiency of Breast Wheels.—As a result of General

Frc. 11,

Morin’s experiments with two breast wheels, both with well-
fitting flumes, the efficiency, 5, was found to be =0.60 and
0.70 respectively. In general 5 ranges from 0.65 to 0.75 for
breast wheels; and for Wesserly wheels, as high breast wheels
are sometimes called, from 0.65 to 0.72. Some overshots have
been found to give efficiencies of 0.80 and above.

25. The Sagebien Wheel.—A peculiar variety of breast
wheel, invented by Sagebien, is shown in Fig. 11. Its revolu-
tion must be very slow on account of the shape of the floats
and their position. Hence much intermediate gearing is
rendered necessary.

If the direction of motion of the Sagebien wheel is reversed,
it requires power from without to drive it and becomes a pump,
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the power spent upon it being used to raise water. Such a
pump-wheel has been constructed and set up for purposes of
irrigation on the Nile in Northern Egypt. (See the London
‘“ Engineer,” Jan. 1886.)

26. Undershot Wheels.—These are almost entirely inertia
motors, rejecting the water at about the same level as that
at which it entered. The stream, with velocity c="2gh due
to the head, issues horizon-
tally from under a sluice-weir

1

into the air and leaves the 3_-_':_ 1
floats with about the same =
velocity v as that of the A==

5
|

extremities of the floats, o=
having impinged against them §_:
in its passage under the L=

wheel. The floats are radial,
or slightly curved from a
radial position. Fig. 12 shows
an ordinary construction. Evidently the whole power is due
to impact.

27. Power of an Undershot.—Let @' =the volume of water
which actually suffers tmpact per unit of time. Let v=velocity
of the middle of a float, and ¢ that of the water before striking
it. Then, as in § 17, we may write (remembering that «; is
zero here) for the total power

Fia 12,

L=%(c—v)v. S ¢ )

This is a maximum for v=4%¢, but even then equals only half

the initial kinetic energy of the water, i.e.,
1@y & 4

Lm._2 g . 20 . . . . . . (2)

Hence, even if @' =Q (the volume of water issuing from

the sluice-opening per second), n for undershot wheels could

never exceed 0.50. Roughly, Gerstner has computed from the

experiments of the next paragraph that the power of a good
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(c—v)er’ where @ is the volume of water

undershot is L=0.61

passing the sluice-opening per time-unit; and therefore @’
must =about three fourths of Q.

As a best velocity for wheel circumference, Gerstner gives
v=0.4c. In general it may be said that the efficiency of under-
shots ranges from 0.25 to 0.33 for the ordinary variety.

28. Experiments with Undershot Wheels, by Smeaton,
Bossut, Morin, and others, have given somewhat varying results.
Smeaton, with a small wheel 75 inches in circumference, found
7 no higher than 0.25, while Bossut, with slightly larger wheels,
obtained a somewhat greater value. (See above.)

29. Current-wheels or Paddle-wheels. — These names are
given to an undershot water-wheel, with comparatively few
radial blades, hanging in an open current and supported on a
pier; or, more advantageously, when the height of the water
surface is variable, upon a floating dock or barge. They utilize
less energy than the common variety of undershot just men-
tioned, not being enclosed in a
flume and having fewer floats.
Fig. 13 shows a simple construc-
tion.

Current-wheels are in use for
operating dredges on the river
Rhine; and, in a crude form,
have been constructed and used
to some extent on the streams of
the western part of the United
States for irrigation and other
purposes. For instance, one was constructed at Fayette Valley,
Idaho, 28 ft. in diameter, and having 28 paddles, each 16 ft.
long and 2.5 ft. wide. (See Engineering Record, Nov. 1904,
p. 621.) :

30. Poncelet Undershots. —In this peculiar and efficient
wheel the floats are curved (see Fig. 14) and the crowns rather
deep, the wheel being so designed, and run at such a speed,
that the water enters without impact, mounts the curved side of
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a float to a certain height and then descends, exerting a con-
tinuous pressure and losing its absolute velocity gradually;
and leaving the float in a direction (relatively to the end of
the float) opposite to that of entrance and at the same level.
They are specially suitable for small falls, under 6 ft., utilizing
about double the energy of an ordinary undershot. With
greater falls they are excelled by breast wheels and are more
difficult of construction. The wheel must fit the flume very
accurately for the best results. Poncelet wheels have been
built from 10 to 20 ft. in diameter with 32 to 48 floats of sheet
iron or wood, iron being the better material.

Fia. 14.

This variety of undershot owes its superiority in efficiency,
when compared with the ordinary undershot, to the fact that
the water is received upon the float at A without impact, and
leaves the wheel at B with but little absolute velocity. At A
the absolute velocity of the jet (that is, velocity relatively to
the earth) is w=+/2gh. The edge of the float has a velocity of
v=a little more than one-half ¢ and in a different direction. If,
therefore, a parallelogram of velocities be formed with w as
diagonal and v as one side, the other side ¢ is determined (see
Fig. 14, at A) and the curve of the float should be made tangent
toc, and not to w, since ¢ is the velocity of the entering water
relatively to the edge of the moving float (see p. 90, M. of E.), in
order that the path of the water may suffer no sudden change of
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direction. The water reaches a height C and then descends along
the float, exerting continually a forward pressure against the
float (the stream being open to the atmosphere on the other side).
On reaching the exit-point, B, the relative velocity of the water
is tangent to the lower extremity of the float-curve, as at en-
trance, and has about the same value ¢ as at entrance, but is
now directed nearly backward as regards the motion of the
wheel. The result, therefore, of combining this relative velocity
with the velocity v of the float-tip itself is to give an absolute
velocity of exit w, for the water which is small in value and
nearly vertical in direction.

Since at both points A and B the water is under the
same pressure (atmospheric) and these points are practically
at the same level, the energy given up by the water per second

is

Qrv? Qrw.?

92 g 2" ey
and since impact is largely avoided (by means already cited)
a large portion of this power is transferred to the wheel, thus
accounting for its superior performance. As high an efficiency
as 68 per cent., with v regulated to a value of v=0.58w, has
been obtained by test. On the whole, therefore, Poncelet
wheels give about double the efficiency of ordinary undershots.

30a. Gearing of Overshots and High Breast Wheels.—In
transmitting the power of these wheels, the axle may be largely
relieved of the weight of the water in the buckets by so placing
the pinion which gears with the cog-wheel or rack concentric
with the axle of the wheel, that the tooth pressure between
the two sets of teeth may be vertical and act in the vertical
plane parallel to the axle and containing the center of gravity
of the water in the buckets at any definite instant. This
center of gravity may be found approximately by considering
this quantity of water as forming a segment of a circular wire.
(See p. 20, M. of E.)



CHAPTER III.

PrRELIMINARY THEOREMS, FUNDAMENTAL TO THE THEORY OF
TURBINES AND CENTRIFUGAL Pumps.

31. Remarks.—Lying at the basis of the theory of turbines
and centrifugal pumps are the following theorems (A, B, and
C), the presentation of which is necessary at this stage of the
present work. The proofs of these theorems bring into play
the fundamental principles of mechanics, and it must be par-
ticularly noted that without the existence of a ‘‘steady flow ”
Theorem C does not hold.

32. Theorem A.—Given a homogeneous mass abcdefa whose
volume is V and center of gravity at C, Fig. 15; if a thin hori-
zontal lamina AA’ is removed from the upper part and placed
50 as to occupy the space BB’ (also in the form of a horizontal
"lamina), then the center of gravity of the mass a'b'c’d'defa’

G
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(whose volume is also equal to V) will occupy a position C”
at some vertical distance dH lower than C. Let dV denote

the volume of the horizontal lamina in question and h the
39
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vertical distance between centers of gravity of AA’ and BB’;
then we are to prove that V.dH=(dV) .h.

Pass a horizontal reference plane OX through the center
of gravity of lamina BB’. Let V’ denote the volume of mass
a'b'cdefa’ (mass common to both arrangements of the com-
plete muss of volume 17). Then from the properties of the
“gravity "’ coordinates of a mass and of its component parts
(see p. 19, M. of E.) for the original arrangement of the masses,
denoting by H’ the height of the center of gravity of ¥’ above
0X, we have

V.H=V'".H+@V).h; . . . . . ()

while in the second arrangement,
V(H-dH)=V'H' +(dV)Xzero. . . . . (2)
Subtracting (2) from (1) we easily derive
V.dH=WdV).h; «QED. . . . . (3)

33. Theorem B.—Let M be the mass of a small particle
or ““material point "’ (Fig. 16) which is describing a plane curve
ABC under the action of one or more forces. Let AB be
any element of the path, described in a time dt, while P is
the resultant of all the forces acting on the particle at this
point of its path. Denote the velocity of the particle in passing

Fre. 16.

A by w, its velocity at B by w’, (each being tangent to the
curve at its proper point,) while p denotes the acceleration
due to force P; this acceleration being (by Newton’s law,
p. 53, Mech. of Eng.) in the direction of the force. Of course,
p=P+M.
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If this resultant force P were zero, the particle would keep
along the straight line TD, tangent to curve at A and the
velocity would remain constant, =w. But on account of the
action of the force P we find that its path curves away from
the tangent at A and that its velocity at B is of a different
value, w’. If the velocity at A had been zero, and P had
then acted, the particle would have moved in the line of P
and its velocity at the end of dt seconds would have been p . dt.
Hence, by the parallelogram of motions, it follows that the
value of w' must be such as would be given by the diagonal
of a parallelogram whose two sides are respectively equal
(by scale), and parallel, to w and to p.dt. Hence note the
intersection, F, of the two tangent lines (at A and B). A
parallelogram whose side FD lies along the tangent drawn at
A while the other side is FR parallel to P (FD being equal
to w and FR to p.dt), must have for its diagonal FE, repre-
senting w’ in amount and direction.

Now the parallelogram FE has the same geometrical proper-
ties as if it were a parallelogram of forces, that is, the ‘ moment ”’
of the resultant (diagonal) about any point is equal to the (alge-
braic) sum of those of its two components (sides) about the same
point. Hence, if from any point, O, in the plane, perpendiculars
are dropped upon the tangent line at A, the tangent line at B,
and the line FR, the lengths cf these perpendiculars being
called k, ¥/, and a+n (n being the perpendicular distance of
P at A from FR, while a is the length of the perpendicular
dropped from O upon the line of the force P at A), we may
write wWk'=wk +p . dt(a+n), which may be written

1 d(wk)
;- at =q+n, . (4)

since (w'k’ —wk) is the increment, d(wk), which the product
(wk) receives as a consequence of the time ¢ taking an incre-
ment df. If now dt be made equal to zero, the distance n
becomes zero, while d(wk)+dt is simply the “derivative ”” or
first differential coefficient of the product (wk) with respect
to the time ¢; so that, with p=P -+ M, we may write

wk —wk=p.dt(a+n), or
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M. [g—(;v—t’c)]=Pa.

That is, the moment (Pa) of the force about any point,=massX
the time rate of variation of the product wk about the same point.
(One of Kepler’s laws for the planets may be proved by
the aid of this relation.)
For subsequent use, this will be written in the form

MWk —wk)=Pa.dt. . . . . . (5)

The quantity Mwk, or Mwk’, is called angular momentum,
and hence M(wk’—wk) may be called the change of angular
momentum occurring in the small time dt.

34. Theorem C.—Power of a turbine in steady motion =an-
gular velocity X change of angular momentum experienced by
the mass of water flowing per unit of time, In its passage
through the turbine.—A turbine channel is essentially one of a
number of short curved pipes or passageways, forming a single
rigid body (the turbine, or ‘“‘runner ), their extremities lying in
two circles concentric with the axis of rotation (vertical axis,
here). This set of channels or ‘“pipes’” (see Fig. 19) revolves
" with wniform angular velocity (a sufficient resistance being
offered to the wheel to prevent acceleration, so that the motion
is ““steady ”’) and water is continually passing through them
and is under pressure; the channels, therefore, being always
full. The water passes into these channels from the mouths
of other and fized (stationary) passageways the walls of which
are called guides. Fig. 18 shows an assemblage of guides
which is supported in the interior of the ring (containing the
wheel-passages) of Fig. 19. See also Fig. 56 on p. 112.

Each vertical partition (or ‘“blade,” “float,” or ““vane’)
between the wheel-channels experiences more pressure from
the water on its concave than on its convex side, and the sum
of the moments of all these excess forces, about the wheel
axis, called 3'(Pa), may be regarded as the moment of a single
resultant couple representing the action of the moving water
on the wheel, which couple maintains the uniform motion of
the wheel against a proper resistance. Suppose each force
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of this couple to have a value Py lbs., with an arm of ay ft.;
then S (Pa)=Py.ao. In a unit of time each of the two forces
Py works through a distance wao+2, where w is the uniform
angular velocity of the wheel. Hence the work per second,
or power exerted, is 2Powag+2=w2(Pa) ft.-lbs per second,
or L; that is,

L, = power of water on wheel, = wPoao=wZ(Pa). . (6)

ft.-1bs. per sec.

Now conceive the water which at any instant lies in the
turbine-passages to be subdivided into a great number of
vertical rings, concentric with the wheel, of equal volumes, and
+———=—~ of such small thickness
that at the end of any
small time, dt, each ring
fills the exact space oc-
cupied by its (forward)
neighbor at the begin-
ning of the df. (See Fig.
21.)  The dotted line
MN in Fig. 20 shows the
absolute path (that is,
the path relatively to
the earth) and the initial and final velocities, w, and w,, of a
particle of water, as the ring to which it belongs passes completely
through the wneel

(The curvature of this path and the diminution of velocity

are to be particularly noted.)
’ Fig. 21 shows the ideal division into rings (of water) for a
segment of the turbine. In the small time df in which any one
ring passes (outwardly) into the next consecutive position, a
portion, A (of the ring), included between any two neighboring
partitions, or “vanes,” passes into a position A’ in the next
ring-space, and in this new position, on account of the flow
being ‘“steady,” has an absolute velocity w’, equal to that, w”,
which the portion B had at the beginning of the d¢; while the
length of the perpendicular, ¥, dropped on w’ from the wheel

Fra. 20.
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axis, is the same in value as for B at the beginning of the dt,
since the positions A’ and B are in the same ring-space. In
other words, the ‘“moment” of the absolute velocity for A’
(i.e.,, the w'k’ of Fig. 16)
about tne axis of the wheel,
at the end of the dt, is the
same in value as that for
B at the beginning of
the dt.

Now consider by itself
(i.e., as a ‘“free body”’)
(see Fig. 22) the prism 1, Fra. 21.
at the entrance of any one of the wheel channels. Py’ and
P, are the pressures of the partitions against it; let P; repre-
sent their resultant; (it is, of course, the equal and opposite
of the resultant pressure of the prism against the wheel at
this instant.) Since the pressures of the neighboring prisms

Fi1a. 22.

against 1 have lines of action containing O, the wheel axis,
those pressures have zero moments about O, and the moment
about O of P; (i.e., the moment Pia;) is therefore equal to



46 HYDRAULIC MOTORS. § 34.

the moment about O of the resultant of Py, P,”, and the

pressures on LH and RS. During the time dt, prism 1 moves

to position 1’ in the next ring-space, w; changes to ws, k; to k..

Hence from eq. (5), with dM as mass of the elementary prism,
dM(w,k; —’lU2k2) =P1a1dt.

Similarly for the other prisms in this chanrnel between RS and
n, as they, simultaneously with 1, in time dt, move into their
consecutive positions, we may write (remembering that all
the dM’s are equal).

dM (wok2 —wsks) = P2azdt; dM (wsks —waks) = Paasdt;
and so on, up to
’ dM(w,._lk,._l — Wy . k,,) =P,._1a,._1dt.
Adding these equations, member to member, we obtain

2 (Pa) for one channel=%‘t—[ (wiky —wakn).
Hence, if the wheel has m channels,
2 (Pa) for the whole wheel=m—%]‘£(w1k1 —Wkn).

Now m . dM is the mass of water which leaves the wheel in
time dt; hence if Q is the volume of water passing per unit of
time, and 7 is the weight of a unit volume of water, it follows
that mdM =(Qyr+g) . dt; therefore

2 (Pa) for whole wheel=%r (wiky —weks), . . (D

which is the moment of the couple to which the action of the
water on the wheel, in this steady motion, is equivalent. Hence
the power of the wheel at this speed [that is, the work per second
done by this working couple] is, by eq. (6),

L=wz(Pa)=w%f(wlkl—w,.k,.) )

ft.-1bs. per sec.
The velocity w,=the absolute velocity of the water at the
exit-point of a channel (see Fig. 20).
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The right-hand member of eq. (8) is seen to consist of the
product of the (uniform) angular velocity, w, by the difference

between the quantities %wlkl and %w,,k,,, or the change in

the “ angular momentum” of the mass, %: of water flowing in

a unit of time. (Q.E.D.)

Eq. (8) may be thrown into a more convenient form, thus,
Fig. 23. By means of a rectangle, the velocity w; of the water
at the entrance, M, of a wheel-
channel can be resolved into m":\{.
two components, one, u;, lan- &\‘
gent to the inner circle of the
wheel-ring of radius r;, and the
other along the radius drawn
to that point, V.

Similarly, at the exit-point,
N, of a wheel-channel, the abso-
lute velocity w, can be decom-
posed into a tangential compo-
nent u, and a radial component
V., at right angles to each
other. If a and g denote the
angles that the absolute veloci-
ties make with their respective Fia. 23.
tangents (Fig. 23), we have

uy=w; cosa, and Up,=w, oS .
Evidently, from the similar triangles involved, we have
kyiriiiugiwy, and  Knira:iun:iw,;
and hence eq. (8) may be written in the form

Power=L=%’(ulr1—u,.r,.). N ()]
Hence the moment of the couple would be

Poao=2(Pa)= % = %r[um —Unrn]. . o . (9a)
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Again, since the product, angular velocity Xradius, gives the
linear velocity of the outer end of that radius, wr; may be re-
placed by v;, the velocity of the inner edge (or entrance-point)
of the wheel-ring, and wr, by v,, the velocity of the outer edge
(or exit-point) of the wheel-ring; whence we may also write

Power of water on turbine=L =%r(u1v1 —Un¥,) . (10)

ft.-lbs. per sec.

These tangential velocity-components of the water, u; and u,,
are sometimes called the velocities of whirl of the water; at
entrance and exit, respectively.

This equation is remarkable in not involving the internal
fluid pressures at entrance and exit.

35. Turbine Pump.—In the foregoing it has been supposed
that the rigid body containing the set of rotating channels or
pipes forms a ‘‘turbine,” the action of the water on which is
equivalent to a couple so directed as to tend to accelerate the ro-
tary motion of the turbine; which acceleration is supposed to be
prevented by application to the turbine of a system of re-
sisting forces constituting a couple having a moment equal
and opposite to that of the first, i.e., opposite in direction to
the rotary motion of the rigid body. If the moment of this first
equivalent couple is negative in any particular instance, it simply
shows that the action of that couple tends to retard the motion
of the rigid body, or set of channels; for the maintenance of
whose uniform motion, therefore, the second, equilibrating,
couple to be applied to the rigid body must have a moment
coinciding in direction with that of the rotary motion of the
rigid body itself, which in this case acts as a ‘‘ centrifugal pump ”
(to be treated in a later chapter; see § 105).

36. Other Kinds of Turbines.—Although the turbine con-
sidered in the present discussion is for simplicity one in which
the general course of the water is radially outward, in planes
at right angles to the shaft of the turbine, the same kind of
treatment may be applied whatever the nature of the turbine
in question and corresponding path of the water (e.g., radial
inward flow; radial and downward flow; or one in which the
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path of a particle lies in a cylindrical surface parallel to the
shaft; see later chapters). For any variety of turbine eq. (10)
holds; v; and v, being the respective velocities of the entrance-
and exit-rims of the wheel, and u, and u, the projections, upon
the tangent lines of those rims, of the absolute velocities w,
and w, of the water, at entrance and exit respectively.

37. Numerical Example.—A turbine uses Q=50 cub. ft.
of water per second in steady operation. The absolute velocity
of the water at entrance is w; =50 ft. per second at an angle
of a=20° with the tangent to wheel-rim; and that at exit
is w, =10 ft. per second at an angle of x=110°. The speed of
the wheel is 120 revs. per minute, the two radii being r, =1.5 ft..
and r,=2 ft. Compute the power derived by wheel from the
water under.these conditions.

Solution.—From these data we have, for the ‘‘velocities
of whirl,”

u1 =50 cos 20° =50 0.940 =47.0 ft. per sec.,
and
Uyn =10 cos 110° =10 X (—0.342) = —3.42 ft. per sec.
Since the angular velocity =2z4%" =12.56 radians per sec.,
=w, we have, for the velocity of the wheel-rim at entrance,

v, =wr; =18.84 ft. per sec.; and, for that of outer wheel-rim,
Vp=wr, =25.12 ft. per sec. Hence the power derived is, from

eq. (10),
2.
L =503>;62 5[47-0 X 18.84 — (~3.42)(25.12)] = 97.1[885.0 + 85.9]

=94,300 ft.-lbs. per sec., or 171.3 H.P.

We also find that the moment of the couple to which the
action of the water on the turbine is equivalent is

3(Pa), =L +w=94,300 +12.56 =7510 ft.-Ibs.

38. Turbines. Fundamental Formula for Power.—In Fig,
24 is shown a vertical section (pulley in perspective, however)
mainly diagrammatic, of a (radial outward-flow) turbine, with
shaft vertical, in steady operation. A is the upper level or
head-water, B the lower level or tail-water, the difference of
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elevation, A, of their surfaces being the ‘“head ” of the mill.
site. The thick heavy lines indicate the turbine and its shafts,
points 1 being at the entrance and » at the exit-point of a
wheel-channel. In this case the heights of the wheel-channels
at 1 and n are not the same. The guides are in the space S,
S; the water being conducted to them through the rigid ‘pen-
stock” P P.

Points n, where the water leaves the wheel, are in this figure
(and quite often in practice) at a higher level than the surface
B of the tail-water; the stationary tubes or vessel which the
water enters on leaving the wheel at n being called the ‘‘ draft-
tube,” or ‘“suction-tube.” The height &, is rarely taken at
more than 20 ft., in order that the water in the draft-tube may
be under sufficient pressure to keep it full at the highest point
n. In an ideal design for the best effect (but rarely met with)*
the entrance of the draft-tube should be made with a very
gradually enlarging section n to m, in order to reduce to a
minimum the loss of head at this point in the progress of the
water (more gradual than in this figure).

But little leakage is supposed to take place at 1 or n
between the edges of the moving crown-plates (or shells) of
the wheel (E, D) and the stationary edges of the guides, or
of draft-tubes. As already shown in Fig. 19, the curved passage-
ways or channels of the turbine lie in a ring, being separated
from each other by vertical curved blades or vanes, and are
closed in at top and bottom by the ¢‘crown-plates,” or shells,
E and D, which are rings, more or less flat, providing a floor
and a roof for each passageway.

In this figure the power of the wheel is employed in winding
up a cable on a drum W keyed upon the shaft of the wheel,
the tension in the cable being R’lbs. (Radius of drum =r.,)

We shall now assume that the flow of water from 4 to B
through the fixed pen-trough, moving wheel, and fixed draft-
tube is steady, and that this flow takes place with full passage-
ways (any air previously contained therein having been ex-

*See Engineering News, Dec. 1903, p. 569.
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pelled), the angular velocity of the wheel being uniform, its
acceleration being prevented by a proper value of R’, the
tension in the cable.

With proper design of the Wheel-passagw, etc., the action
of the water on the wheel is equivalent to a ‘‘couple "’ acting
in a plane at right angles to the shaft and having a certain
moment Poag ft.-lbs. The value of this moment depends on
the speed at which the wheel is permitted to run. By ‘‘ steady
motion,” then, both of water and wheel, we imply that the
resistance provided (R’ 1bs.) is such that the moment R'r = Pya,,
where Pgao has the special value corresponding to the par-
ticular uniform speed of wheel; so that no acceleration takes
place.

We also assume that the surfaces A and B are so large that
the water in these surfaces has no appreciable velocity during
the flow; and that all quantities concerned in the design are
properly adjusted to each other to secure the most advanta-
geous result for the permissible consumption of water (or
rate of flow) @ cub. ft. per second. In other words, friction
is reduced to a minimum. This latter is accomplished by
such design (details given later) that all elbows, sudden en-
largements of section, eddyings, etc., in the flow of the water,
giving rise to fluid friction and consequent ‘‘loss of head "’ are
avoided (as much as possible).

Such being the assumptions made for the wheel in Fig. 24,
let us apply to it and the moving water the Principle of Work
and (Kinetic) Energy (see p. 149, Mech. of Eng.). This holds
good for any collection of rigid bodies moving among each other.
The assemblage of rigid bodies to which we are now to apply
it consists: first, of the wheel itself, with shaft and drum and
the portion of cable shown in figure; the other rigid bodies
being all the particles of water in the whole body of that liquid
in the two ponds and all the internal spaces of the wheel, pen-
stock, and draft-tube. (Water being practically incompressible,
each particle of it is a “rigid body.”)

The extent of motion that is to be considered is that taking
place in a single element of time, df, seconds. Since @ cub. ft.
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per second is the rate of flow, the quantity flowing in a time
dt will be Q. dt cub. ft. In this short time, dt, surface A sinks
to A’, while surface B rises to B’; the volume of the hori-
zontal lamina of water AA’ being equal to that of the lamina
BB’, each being =@ .dt. The total atmospheric pressure
acting on the surface A is an external force P4, acting on our
system of rigid bodies, and is a working force doing the work
P,XAA’, while that acting on B, Py, is an external resistance,
upon which is expended the work PzXBB'. Now these
products are equal and cancel each other in the summation
of items of work (easily proved by the student).

In dt seconds the center of gravity C of the whole body
of water (whose weight we denote by G lbs.) sinks through a
small vertical distance dH. Hence the work done by this work-
ing force is G . dH ft.-Ibs; which, however, from § 32, eq. (3),
can be replaced by Q.dtrh. Also, in this time dt, the re-
sistance R’ in the cable is overcome a small distance ab, or
ds, and the work done upon it is R’ . ds. Disregarding friction
for the present, we note that all the other external forces acting
on the wheel and the water particles (that is, the pressures
from the walls of penstock and draft-tube and the weight of
the wheel itself) are ‘“neutral” (that is, either they act at right
angles to the path of the point of application or the point
of application does not move at all); and that all the mutual
pressures are normal to the rubbing surfaces and hence can
be omitted from consideration. (See p. 149, Mech. of Eng.)

Next, as to the gain or loss of kinetic energy possessed by
each of the rigid bodies of the collection considered, occurring
between the beginning and the end of this small time dt; we
proceed thus: ‘

Conceive the whole body of flowing water to consist of a
vast number of very small groups of particles, these groups
containing equal masses of liquid and so situated thatin dt
seconds any group moves into the position just vacated by
the adjacent group next ahead of it. (This means that the
volume of each group is Qdt. The lamina at A is Group
No. 1, while that at B is the last group of the series.) As a
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consequence of the flow being ““steady ” it follows (by defini-
tion of steady flow) that the particles of any group acquire at
the end of dr seconds a velocity equal to that which the particles
of the next group ahead possessed at the beginning of the time
dt. Now in the application of the principle of Work and Energy
we are called upon to subtract the initial amount of Kinetic
Energy of each mass from the final; but from the circum-
stances noted above it is seen that the initial kinetic energy of
each group of particles is equal to the final kinetic energy of
the group just behind it, so that when the subtractions indi-
cated are all written out and added together a total cancellation
or zero, is the net result of the aggregate change of kinetic
energy of all the particles of water. As already postulated,
the velocity of the group, or lamina, at A (and also at B) is
insensible. Also, since the velocity of the rotating wheel is
uniform, there is no change of kinetic energy on the part of
that body, in the time dt.

Hence the net result of the whole operation of applying
the method of Work and Energy to the rigid bodies men-
tioned, for the duration df seconds, is simply

G.dH=R'.ds, . . . . . . (1)
ie., Qrdt .h=R'.ds. . . . . . . (2
But (2) may be written
ds.

dt} e

and again, since ds+dt is tne uniform velocity of a point in
the cable, or in the rim of the drum W, (call it ¢’,)

Qrh=RY. . . . . . . €))]

Now RV is lbs. X ft. per sec., or ft.-bs. per sec., i.e., the power

or rate at which work is expended on the resistance R’(lbs.);

to the steady and continual overcoming of which the whole

power Qyh, due to the water supply @ and the head b, is ap-

plied. That is, in this ideal case of a water motor of perfect

design and of perfect adjustment in operation, with no friction

Qrh=R. 3

. R .
of any kind, the eﬁiclency=Q—~m=1.OO, or 100 per cent.; since
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in general the efficiency=ratio of the part of the power that
is usefully applied, to the whole theoretical power (Qrk) of
the mill-site.

 39. Example.—If the full water-supply is Q=48 cub. ft.
per second, and 2 =100 ft., we have Qr=48Xx62.5=3000 lbs.
per second; so that Qyh=300,000 ft.-lbs. per second is the
full theoretical power of the mill-site (if 48 cub. ft. per
second is the maximum available rate of supply). With a
100 per cent. motor to utilize this power we should have
R =300,000 ft.-lbs. per sec. The wheel being run at its best
(most advantageous) speed of (say) 120 revs. per minute, while
the radius of the drum is r=1.5 ft., the velocity of a point in .
the cable would be v' =27 X1.5X120 +60 =18.85 ft. per second,
and we have R’X18.85=300,000; i.e., R’ is 15,916 lbs., =the
tension that can be overcome in the cable at the specified
linear velocity of cable (18.85 ft. per sec.).

Even with the best designs, however, the useful power
obtained would rarely be more than 85 per cent. of Qyh on
account of fluid friction and the friction at the axle of the
shaft; in such a case, therefore, we should have

R'v' =0.85%300,000; [=463 H.P;],

and with v’ the same as before we find that R’ is only 13,528 Ibs.
(tension, or “load ).

In case the power is taken off, not by a cable, but by a
cog-wheel gearing with a pinion keyed on the shaft of the
turbine, R’ would represent the tangential component cf the
pressure between two engaging teeth, and v" the linear velocity
of the pitch-circle of the pinion (or cog-wheel).

40. Turbine with Friction.—Referring again to Fig. 24,
we note that if both fluid friction and axle friction are {o be
considered, the outcome will be as follows:

Let 7’ denote the ‘“‘loss of head ”’ that occurs between the
surface A and the point 1 where the water enters the wheel;
k" the loss of head occurring in a wheel-channel (that is, be-
tween point 1 and point n); and again let A" denote that occur-
ring in the draft-tube (that is, between point n» and the sur-
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face B of the tail-water). If these three heads be deducted
from the head h, the product Qy(h—A'—h"” —h"’) will express
the power of the mill-site after fluid friction has been allowed
for.

As to axle friction, if that be represented by R” lbs., and
the uniform velocity of the circumference of the axle is v ft.
per sec. then the power lost in axle friction is R'v"” ft.-lbs.
per sec.; and finally

Qr(h—h —h"—N")=R"Y+R"Y', . . . (4a)
as applicable to a turbine when friction is considered. If the
wheel runs immersed in water, another term, Rgvo, might be
added on the right to represent the power lost in fluid friction
on the wheel-casing (i.e., on the outside surface of wheel).

In fact, eq. (4a) might be written in the form

th =R/vl +Rllv/' + E(R/Ilv,’l) ;
(see § 9, eq. (3)) the detail of the term Z(R""’v"") being
SR =QrN +h' +h'"+ Rovo.

41. Bernoulli’s Theorem for a (Uniformly) Rotating Channel
(Steady Flow of Water Therein).—See Fig. 24. Since the steady
flow of water from A to point 1 occurs in a stetionary (rigid)
pipe or casing, we may apply Bernoulli’s theorem for such
flow, denoting by p; the internal fluid pressure at point 1,
by b the height of the water barometer, by r the heaviness
of water, and by w; the absolute velocity of the water at 1;
whence \

%+%;—=b+hl (without friction). . . . (5)
Considering friction, we have

P1, wi?_ _¥
r+2g_b+h1 K, . .. 0. (5a)
where &’ is the loss of head between A and point 1.

We also note that between points » and B the steady flow
takes place in a stationary (rigid) pipe, to which if Bernoulli’s
Theorem is applied (first, without friction), we have
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WaZ  Pn,, .
Eé—+_)‘_+h"' B ()]
w,, being the absolute velocity of the water as it leaves the wheel
at n, and p, the internal fluid pressure at n; h, is the height
of n above tail-water surface at B.

Usually there is considerable loss of head between n and
B, due to failure to make the change of section between n

0+b=

and m very gradual (Fig. 24). Calling this loss of head A"’
[as before in eq. (4a)] and applying Bernoulli’s Theorem with
Jriction, (n to B,) we have :

2
0+b=1'2’—;+%1‘+hn—h”’-- SR ()

Now consider, in Fig. 25, the absolute path of a particle of
water through the wheel; point 1 is entrance where the abso-
lute velocity is w; and internal pressure p,; while at exit,
N, w, is the absolute velocity and p, is the internal fluid
pressure.
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Since the wheel-channel is in motion, w; is not the velocity
of the water at 1 relatively to that point of the channel. This
relative velocity must be found by drawing a parallelogram
(see p. 89, Mech. of Eng.) of which the diagonal is made equal
to w; and one side =v;, the velocity of that point of the wheel
(inner rim), the angle between these being called a.

The other side, ci, being thus constructed, is the velocity
of the water at 1 relatively to that point of the wheel (‘‘relative
velocity” ¢;); and the tangent of the wheel-blade is made to
coincide with this, ¢;, in order that the water may follow the
blade at once without having to make a sudden turn or elbow
(at 1).

Similarly, at the exit, or point N, the absolute velocity w,
of the water particle is the diagonal of a parallelogram of which
one side is vy, the velocity of the outer rim of the wheel (which
is > in ratio of the radii r, and r;), while the other side i3
s, the velocity of the water particle relatively to the point n
of the wheel-channel (‘“‘relative velocity at exit”). Of course
¢n is tangent to the extremity of the blade or vane at point N.
Let 0 and g denote the angles marked in Fig. 25 at point N.
Then, from trigonometry,

c2=w2+v 220w c08¢e, . . . . . (7)
and

2 =W +0.2—20Wpc08 ;. . . . . (8)
hence, by subtraction, :
€2 — 12 = (w2 —w1?) + (V2 —v12) —2(v w5 €OS p—v1w)y cos ). (9)

Now from egs. (5) and (8) we easily find, by subtraction,

& &'_w__nz_wlz. ’

r - T - 2g +h1 +hn, . . . . (9)
in which A;+h, may be replaced by . Between egs. (9) and
(9") wa2—w,? is eliminated, whence, noting that w; . cos a=u;
and w, . cos p=u, (Fig. 23), we have

C2—C12 P1—Pn  VnZ—012 UV —UVp
= + + —h.. . (10
29 7 29 g (10)
But from eq. (10) of § 34 the work done (per second) by the
couple to which the water’s action on wheel is equivalent is
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L=Q—gr(ulvl —u,;?),.), . . . . . . (11)

which in this case (without friction) must=R'v’ (see Fig. 24).
We also have Qrh=R'v" (see eq. (4) of § 38); whence it follows
that

h=[(—“-‘”‘-%“"”—)] . (12

This being substituted in eq. (10) there results

¢ Pa_c® pr (v2—v?)
et b St e P ¢
, 29 r 29 71 29 7 (13)
which is known as Bernoulli’s theorem (without friction) for
steady flow of water in a (uniformly) rotating casing (rotating
around a vertical axis). It is noticeable that it does not con-
tain the absolute velocities of the water at entrance and exit of
a channel, but only the relative velocities of the water, the fluid
pressures, and the velocities v; and v, of the two wheel-rims

themselves. The term <

trifugal head.
42. Bernoulli’s Theorem (Rotating Casing) when Friction is
Considered.—If eqs. (5a) and (6a) be combined we find

29

) is sometimes called the cen-

Pr Pn_ Wy2 — w2 r_prr /
T % +hi+ha—h —=K", . . (Ya)
in which A, +h, may be replaced by h.
This may now be combined with (9) to eliminate (w,2—w;2),
remembering that w, cosa=wu; and w, cos p=u,, whence we
have

M_&_& v"2: v Wi _u"v"_h+h/ +R. (10a)
29 ror 29 g _

Now in the derivation of eq. (10), § 34, for the power due to
the action of the ‘“equivalent couple” of water on wheel, the
forces dealt with, of water prisms on the wheel-blades, were the
actual forces, including frictional components, if any. Hence
that equation will still stand as to its form, now that we are con-

sidering friction. The equation is

|
+
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L=%T[u1v1—u..v,.]. . 222 ¢ (lla)

We also have eq. (4a) of § 40, viz.,
Qr(h _h/ _h/' __hl”) =Rlvl +Rld"

for the case where friction is considered, and note that the power
given by eq. (11a) above is expended on R’ and R”, that is,

RV +R"Y' =%(u11'1 —Unln);

hence
h=kK +h” +1" + ((u1v1 —Untn]l +9); . . . (12a)

and this value of A, placed in eq. (10a) above, gives

€l Pa_ €2 pu vAd—vd

20+r 29+r+ 3 R, . . . (13a)
which is Bernoulli’s theorem for steady flow in a rotating casing
when friction is considered. It is seen that the quantity A" is
what was called the ‘“loss of head occurring in the wheel-chan-
nel,” 8o that (13a) differs from (13) only in the introduction of
this loss of head.

Here we note again that the absolute velocities of the water,
at points 1 and n, entrance and exit of a wheel-channel, do not
appear in this theorem, but simply the relative velocities, the
“pressure-heads,” the ‘‘centrifugal head,” and the loss of head
48

42a. Turbine Pump.—If it is required in Fig. 24 that the
direction of the flow of water be reversed; that is, that a steady
flow of water is to be maintained from the lower level B to the
upper level A, with steady operation of a properly designed
rotating ‘‘ pump”’ (as it now becomes), or reversed turbine,
having properly curved channels, but with inlet 1 communicating
with B and outlet n with A*; it is evident that all the relations
of the previous paragraph still hold good with these differences:
Tnstead of a resisting forece R’ we must have a working force P,
and the cable must unwind from the drum instead of being
wound up. The working force will have to be furnished by some

external source of power, and if the velocity of the cable be now
* See next page.
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called v, we have for the case where no loss of head occurs in
any part between B and A (and no axle friction of pump)
Pv=Qyh, . . . . . . . (19
whereas, if losses of head, etc., occur (using same notation as in
§§ 38 to 42),
=Qyh+h +1'+K"1+R"’, . . . . (15)
instead of eq. (4a)

Also, Bernoulli’s Theorem for steady flow in a rotating pipe
revolvmg uniformly in a horizontal plane remains the same as
(13a), viz.,

P P10
= T —— kY, L L. (16
2077 2 1 29 ’ (8
provided the flow (relative) is still from 1 to n.
* Or, Fig. 24 may be conceived to be changed'm this respect: that B is

still the receiving-tank, and A the source of supply, but that B is at a higher
elevation than A.




CHAPTER 1V.
IMpuLsE WHEELS.

43. Definition of Impulse Wheels.—Water-wheels furnished -
around the rim with small buckets, or cups, or curved vanes
closed in on the sides, and receiving the action of a ‘“free jet”
of water directed tangentially to the rim or nearly so, are called
“Impulse Wheels”’; sometimes ‘‘tangential wheels”. By a
“free jet’ is meant one which is formed ‘“‘free” in the atmos-
phere, flowing from the extremity of a nozzle, often of a con-
verging conical shape, though sometimes of rectangular cross-
section.

We shall first consider that the greatest radial width of each
cup or bucket is small compared with the radius of the rim of
the wheel, in which case the movement of a cup may be con-
sidered to be one of translation.

44. Pressure of Free Jet upon a Fixed Solid of Revolution,
when the Axis of the Solid is Coincident with the Axis of the
Jet.—See Fig. 26. Here the jet is deviated smoothly and sym-

F1a. 26.

metrically on all sides of the axis, OX, of the jet; OX is also

the axis of the fized solid AB. The filaments of the jet meet
62
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the surface of the solid tangentially, the center of the latter
being pointed, as shown. The particles of the water, if we
neglect friction, have the same velocity on leaving the outer
edge of the solid at A, or B, as they had on leaving the tip of
the nozzle at F, viz., ¢ ft. per second; but the directions of
their motion at A, being tangent to the solid, make an angle
a with the original direction OX. This angle is evidently the
same in value for all particles as they pass off the solid at A4,
the edge of the circle whose diameter is AB and whose plane
is perpendicular to OX.

The resultant pressure, P lbs., of the jet agamst the solid
during this steady flow, is found by considering that in a small
time 4t seconds a small mass 4m of water has had its velocity
in the direction of OX diminished from a value of ¢, to c cos a, ft.
per sec. Hence a force equal and opposite to the force P
has occasioned a negative acceleration p=&jtos—a in the

component of velocity parallel to OX, of the mass 4m.

c—cC. COoS a]

. P, =mass Xaccel. —Am[ 1)

Now if @ is the volume, per second, of water issuing from the
nozzle (being also the volume per second acting on the solid;
since the latter is held at rest), we have for the mass passing

over it in 4t seconds 4M = (Qr>4t and therefore may write

P=Q7rc(1—c08a). R )

For example, with a jet of one inch diameter having a velocity
of 40 ft. per sec., the angle a being 45°, we have

Q= Z<112> X40=0.218 cub. ft. per second;

0.218X62.5 X 40,

v P= 35— 11 ~0.707]=4.96 lbs.
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45. Pressure of Free Jet on Solid of Revolution when the
Latter is in Motion away from the Jet.—As before, the solid is
one of revolution with its axis coinciding with that of the jet
and its motion is assumed to have a uniform velocity v (less
than that, ¢, of the water in the jet) and to be directed along
the axis OX. (See Fig. 27)

Fia. 27.

Here, for a given volume per second €’ passing over the
solid the resultant pressure P of the water against the solid
will be, of course, less than before, for the same angle a; but
since the solid is now in motion P is a working force, for it;
and to prevent acceleration of the motion of the solid a resist-
ance R lbs. equal to P and in same line, but oppositely directed,
is supposed to be furnished. It is required to find the value
of P for a given v and ¢ and sectional area, F sq. ft., of the jet.

The velocity of a particle of water is ¢ just before encounter-
ing the point of the solid. On leaving the further edge of the
‘solid, as at A4, its velocity relatively to the solid (since friction
is neglected and 4 is not appr e01ably higher or lower than the
nozzle) is the same as before, viz., c—v; but the direction of
this relative velocity is at an angle a with the former direction
0..X, and the point A has itself a velocity v parallel to 0. .X.
Hence the absolute velocity (i.e., relatively to the earth) is
w=(Aw in figure), the diagonal of the parallelogram formed
on the relative velocity, c—v, and AH,=v, as sides. Hence
the loss of velocity of the particle in the direction 0..Xis
equal to ¢ diminished by AC, the projection of w on OX. But

“evidently this projection, or velocity-component, AC is made
up of v and HC, HC being equal to (c—v) cos a.
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Therefore the loss of velocity, in direction O...X, of the
small mass 4M passing over the solid in the time 4¢ is

c—[v+(c—v)cosa], or (c—v)(1—cosa).

As before, P =massXaccel.=4M . (c—”)(%_“_).

4
But the value of 4M is %Idt, where @' is the volume of

water passing per second over the solid (and not that, @, issuing
from the nozzle). Hence

’ _ _ .
P=Q r(c 'v);l cos a); LB
and the work done by this working force on the solid every

second is

Y4
Q'rle v)(gl cos a)v . @
_ ft.-lbs. per sec., and is expended in overcoming the resistance
R through v ft. each second; that is, Pv=Rv. Evidently if «
is made greater than 90°, the solid of revolution becomes a
cup, concave to the jet.

46. Impulse Wheels.—It is to be specially noted that in
eq. (4) @ denotes the volume (say cub. ft.) passing per second
over the solid of revolution, se that @ =F(c—v); and not
Fe,=Q, which is the volume per sec. issuing from the nozzle.
But if a motor be constructed consisting of a series of such
solids of revolution, or cups, or of equivalent curved vanes,
coming into position successively and endlessly, which would
be the case if they were placed on the rim of a wheel of large
radius, more work per second could be done and in proportion
to the water used; since more than one solid or cup would be
in action at certain times, the portion of jet intercepted be-
tween two consecutive cups being able to finish its action on
the cup in front, while new work is being done on the adjacent
hinder cup. With this arrangement, therefore, all the water
issuing from the nozzle would be used, and for @’ we may sub-
stitute @ and thus obtain for the power of a motor provided
with such a series of cups the expression

Py,or L/ =
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L=QT(”_1')l;—°°s“}” N )

ft.-1bs. per sec. The corresponding average working force is

P=QT("_");1—COS“) U

Ibs. It isevident from (5) that for a given water-supply, @ cub.
ft. per second, the value of the power L depends on both v and
the angle @, becoming zero both for v=zero (stationary cup)
- and for v=c (in which case the jet does not overtake the cup).
It is also zero for a =0°.

For any constant v, L is evidently a maximum for a =180°,
ie., for cos a=—1; and then takes the form

_20r(c—v)v
g

This value of the angle a may be attained by giving to
the solid of revolution the form of a ring-shaped cavity the
tangents to whose outer rims are parallel to the jet so that
both the relative veolcity c—wv, and absolute velocity w, of
the water leaving the solid (or cup, as it may now be called)
are parallel to the original jet. The pointed center of the
cup provides for a gradual deviation of the water from its original
path and prevents eddying and consequent internal fluid
friction. (See Fig. 28.) When such a series of cups is fastened
on the edge of a large wheel,
however, the center of each
cup does not remain accurately
in the axis of the jet when
under its action, since this center
is moving in the arc of a circle.
For the point, therefore, a sharp
ridge is substituted whose edge
lies in the plane of rotation, thus providing for a gradual devia-
tion of the water at all times during the action of the jet on
any given cup.  This dividing ridge separates the cup or bucket
into two lobes, thus giving rise to the general form adopted

L N )
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FIG. 30. 5,000 H.P. PELTON WHEEL.

The above wheel, g feet 10 inches in diameter, is capable of developing 5,000 H.P. at 225
R.P,M., when operating under 865 feet effective head.
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in the Pelton and Doble impulse wheels, as shown in Figs. 30
and 31 (opposite pp. 67 and 69).

Fig. 29 represents a simple impulse wheel of this kind. A
resistance, R’ lbs., is shown, acting tangent to the edge of a
pulley of radius r’ keyed upon the shaft of the water-wheel.
Without such resistance, of
course, the wheel would “ speed
up” until the velocity of the
cups reached a value equal to
that, ¢, of the water in the jet._
The working force would then
disappear, and while a display
of high speed might be made,
no power would be obtained,
the jet passing on asif the wheel
were not present.

It still remains to determine
the special value of v, the cup
velocity, for which the power, L,
is a maximum. Since from eq. (5a)

L=(a constant) X(c—v)v, . . . . . (6a)

. L .
we find that by putting %v_ equal to zero, ie.,, ¢c—2v=0, a

value of v=c§ gives a maximum L. The substitution of this

special value of v for the v of eq. (6) results in the following
expression for the maximum power, viz.,

_20r C>c_ er @ |
Lmax._ g <C 2 2 g 2 e o e (7)

47. Efficiency of the Impulse Wheel.—It is to be noted that
in eq. (7) Qr+ g is the mass of water flowing per second from the
nozzle and c=+/2¢h if there is no friction at edges of the nozzle
(and hy be considered equal to h, Fig. 29), so that L=Qyh, theoret-
ically; from which it is seen that the efficiency of this wheel, run
at proper speed, should be 100 per cent. if it were of perfect
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construction and if all friction could be avoided. This is as it
should be, since the absolute velocity of the water as it leaves the
outer rim of a bucket [this velocity having in general a value =
Velocity of cup —relative velocity of water at rim, i.e.,=v—(c —v),
or 2v—c] would in this case be 2><C§—c; =zero. In other
words, the water possesses no kinetic energy on leaving the
cup. At the beginning of its path on the cup it has kinetic
energy, but no potential nor pressure energy (i.e., none above
that due to atmospheric pressure), and at exit none of any
kind. It has given up its whole stock of energy.

On account of imperfect guidance of the water by the walls
of the bucket and the friction of the water on itself and on the
surfaces of the bucket, (aside from the fact that the value of the
angle a cannot be made exactly 180°,) the efficiency of these
wheels is brought down in practice to values ranging from 70
to 90 per cent., according to circumstances. (See test quoted
on pp. 809 and 810, M. of E.)

In Fig. 29 the head h, is the depth of still water just behind
the center of the nozzle; but in practice a conical nozzle is
generally employed, attached to a pipe or other source of steady
supply, and the efficiency of the wheel is generally referred to
the total head (above atmosphere) at the base of the nozzle
where the pressure is (say) p: lbs. per square inch (above the
atmosphere) and the velocity (much less than that of the jet,
since the sectional area F'; is much larger than that of the jet)

iS Ci.
In such a case we may write, therefore, in place of h,
I;l % ; and hence ¢= 95\}2 ﬂ-*—

if ¢, =0.95, is the coefficient of the nozzle. If the efficiency
is 80 per cent. (for instance), we have for the useful power
(neglecting axle friction)

0.80)Qr c?
g " 2(0.95)2 (OSO)QT[r 2g . (8)

R ="
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FI1G. 31. Doble Impulse Wheel.

F16. 35. Jet from Doble Nozzle.
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48. Numerical Example, Impulse Wheel.—Compute what
resistance, R’, can be continuously overcome, tangent to a pul-
ley of a radius 7 =2 ft. keyed upon the shaft of a Pelton wheel,
whose cup centers form a circle of r=3 ft. radius; if the avail-
able water-supply is Q=1.50 cub. ft. per sec., issuing in a “free
jet”” from a conical nozzle at whose base the fluid pressure is
measured and found to be p; =130.2 1bs. per sq. in. (above the
atmosphere). The diameter of the base of the nozzle is d; =4
inches, and that of the part of jet where its filamenis have become
parallel is d=1.44 in. The wheel is to be run at best speed
‘and an efficiency of 80 per cent. is counted on.

2

Solution.—c; =Q+ﬂ= 17.2 ft. per sec., and hence ;—lgf =46

ft. Alsoc= Q—£=133 ft. per second; while — p L 130622X5144’

=300 ft. We may therefore compute the coeﬁ ¢ from c=
¢\/2 [—+—- , obtaining ¢=0.95, the coefficient of the

nozzle.” Substitution in eq. (8) now results as follows:

R'v =0.80%X1.5X62.5[300 + 4.6] = 22,845 ft.-1bs. per sec.;
or 41.5 horse-power.

The proper speed of the cups or buckets should be v=c+2,
=66.5 ft. per sec. The value of v' is % of v and=44.3 ft. per
sec. Finally, therefore, for R’ we have

R'=L+v' =22845+44.3=516 lbs.

This force R’ may be the tension in a cable winding upon a
drum or the tangential component of the pressure between the
teeth of a pinion on another shaft and those of a gear-wheel
on the shaft of the Pelton wheel. Of course, if the radius
of the drum or gear-wheel is changed, the value of R’ will be
altered in inverse ratio.

49. Flat Plates instead of Cups.—If flat plates were substituted
for the cups of the impulse wheel, the highest theoretical power
would be, as with the ordinary undershot, only

L=%(c—v)v; B ()
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which, with v=c+2 for best effect, would give for the power
2

L=(050)Qr. 5. =050Qrh, . . . . (10)

as the highest theoretical performance; reduced in practice to
25 to 35 per cent. efficiency, in place of the 0.50 of eq. (10).

50. American Impulse Wheels.—Early in the second half of
the nineteenth century simple impulse wheels were constructed
in California provided with flat plates as huckets. These so-

called ‘“ Hurdy-gurdies,” though of low efficiency, were easily ..

and cheaply made, and the speed of rotation could be easily -

varied by a change of radius. The substitution of approxi- -

mately hemispherical cups for the flat plates brought about a
great improvement in performance, and later the invention
of the dividing ridge, the main feature of the Pelton bucket,

raised the efficiency to a high figure; and this improved type :

of impulse wheel is now widely used throughout America and
Europe.

The three principal forms of impulse wheel .with buckets
characterized by the dividing ridge, or its equivalent, as made

»
ce 2"

. ®

in the United States, are those manufactured by the Pelton *
Water-wheel Co. of San Francisco and New York, the Abner-

Doble Co. of San Francisco, and the James Leffel Co. of Spring-
field, Ohio. Perspective views of the three wheels made by
these companies are shown in Figs. 30, 31, and 32, opposite pp.
67, 69, and 70, respectively, of this book. As will be seen
from these representations, the two lobes of the Pelton bucket
are rectangular in form, while those of the Doble wheel, called
‘““ellipsoidal” by the makers, are oval, with notches cut out
at the point of first impingement of the jet. In the ‘“Cascade”
wheel made by the James Leffel Co., the ‘‘lobes,” or half-
buckets, are set ‘‘staggering,” or-‘‘breaking joint,” on the

two sides, and near the rim, of a thin circular disc, whose sharp -

edge serves the same purpose as a dividing ridge to split the
jet. Fig. 33 (opposite p. 72) shows the Escher-Wyss type of
impulse wheel, made in America by the Alhs-Chalmers Co.
of Milwaukee.



)

Fi1cG. 32.

The ‘‘ Cascade '’ (Leffel) Impulse Wheel.
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51. Regulation of Pelton Impulse Wheels.—A conical nozzle
(one or more) furnishing a cylindrical jet of circular cross-section
is generally employed with impulse wheels of the Pelton type.
At the base of the cone the pressure, p;, is high and the velocity,
¢, is small, in regular running; the energy being chiefly in
the pressure form at that point of the flow. When the re-
sistance R’ is reduced below its usual value, unless the work-
ing force P on the buckets is reduced in the same proportion,
the velocity of the wheel will be accelerated; and this is usually
undesirable, especially in the running of electric generators.
A reduction of P can be effected by reducing the size of the
jet, or by reducing its velocity, or by diverting the direction
of jet sufficiently so that only a portion acts on the buckets.

To reduce the velocity requires a reduction in the value
of p, at the base of the nozzle; and this is frequently effected
by the partial closing of a valve-gate in the pipe just up-stream
from the nozzle. But this necessitates a loss of head in the
supply-pipe due to the sudden enlargement of section ex-
perienced by the water in passing from the narrow section
under the valve-gate to the full section of the pipe, and the
efficiency of the wheel is much reduced. This loss of efficiency
is due to two causes: First, the jet velocity and that of the
bucket no longer have the proper relation for best effect.

2
Secondly, the effective head, -1-;—1 +%, (p1is here the pressure in

excess of the atmosphere,) at the base of the nozzle, has less
than its usual value. This so-called ‘throttling” of the
flow to produce the diminution of jet-velocity is therefore a
very wasteful expedient in cases where economy in the use
of water is of importance.

Diversion of the jet (so that only a portion acts on the
buckets) without throttling is also wasteful of water, though
often resorted to in situations where, on account of the ex-
treme length of the supply-pipe, a checking of the flow would
produce dangerous ‘‘ water-hammer " (see later, in § 125).

To diminish the value of the working force P without
materially altering the jet-velocity, and thus retain the proper
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relation between the latter and that of the buckets, requires
a reduction in the sectional area of the jet. A common way
of doing this at the present day, with impulse wheels of the
Pelton type, is by the use of an internal conical ‘‘stopper,’’
or ‘“‘spear-head,” of brass, frequently called a ‘needle,” par-
tially closing the base of the conical nozzle and capable of
longitudinal movement. Fig. 34 shows a longitudinal section

1 | )

of the Doble Needle Regulating-nozzle as used with the Doble
impulse wheel. The water passes through the space AB
(and CD) toward the left. By the advance of the ‘‘needle”
E toward the left the ring-shaped space between it and the
edge of the nozzle opening is progressively diminished in sec-
tional area.

The filaments of water converge toward and beyond the
point of the ‘“needle ” and finally form a solid cylindrical jet
of circular section, ‘““a clear, transparent, polished stream,”
in the words of a thesis by Messrs. H. C. Crowell and G. C. D.
Lenth of the Mass. Inst. of Technology, published in June
1903. Fig. 35 (opposite p. 69) is from a photograph of a jet
issuing from one of these Doble nozzles, and is taken from the
thesis mentioned. The size of the jet depends on the position
of the ‘““needle,” and not on the head of water

52. Girard Impulse Wheels, or ¢ Impulse Turbines.”—An-
other form of impulse wheel may be formed by two flat, parallel,
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and concentric rings, or ‘‘crowns,” between which are in-
serted numerous curved blades, or ‘““vanes” (sometimes bent
from flat plates and therefore cylindrical); and is shown in
vertical and horizontal sections in Fig. 36. The wheel receives
water in a ‘““free jet”’ from a nozzle fitted to a pipe P, placed
either on the inside of the wheel, as in this figure (and then
the wheel is called an ‘‘outward-flow impulse wheel), or on
the outside (an ‘“inward-flow’’ wheel).

This form of wheel, now called in Europe a ‘“Girard Impulse
Wheel,” was invented by Poncelet in 1826 and first applied
practically by Zupinger. The RIE

wheel revolves in the direction S
shown in the figure, and the m:=;-,5.- .
water in passing through it ¢ _,.

along a vane does not fill the
entire space between the two
consecutive vanes and is
therefore exposed to atmos-
pheric pressure on one side
throughout its whole course.
The shapes and positions of

vanes are to be so designed, i
and a proper speed of wheel . s,
so determined, as to give a L

power* (R"') to be expended , ‘ /’
in overcoming some constant ’ //
resistance, R’, tangent to “o

some pulley or gear-wheel Fra. 36.

(keyed upon the same shaft as the water-wheel), the velocity
of a point in whose outer edge is v/ ft. per sec.

The deviation of the water of the jet from its original direc-
tion, and the progressive reduction of its absolute velocity,
are accomplished gradually after entrance upon the vane;
and each particle is considered to move in a plane parallel
to the crown plates, the vertical thickness of the jet being

equal to the distance apart of thcse plates (m and n in Flg
36,

* Maximum power.
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53. Best Speed of the Girard Wheel.—In the horizontal
section of a portion of an outward-flow Girard wheel shown in
Fig. 37, the water of the jet entering at point 1 has an abso-
lute velocity of w, ft. per sec., at an angle of a with a tangent,
1..T, to the inner wheel-rim, the velocity of this inner rim itself
being constant at some value v;. Since the jet is a free jet,
the value of w; is not dependent (beyond a slight extent) on
the presence, or velocity, of the wheel.

With w; as the diagonal of a parallelogram of velocities
(p. 87, M. of E.), and v, as one side (both springing from the
point 1), a parallelogram is constructed whose other side, c;,
will be the relative velocity of the water at 1, i.e., relatively
to that point of the inner rim of the wheel). We assume that
whatever the “best speed’’ of the wheel proves to be, the tan-
gent at 1 to the wheel-vane 1. . N is made to coincide with the
direction of c¢;, the relative velocity, making some angle g
with vy, i.e., with the rim-tangent 1. .7T.

In this way the water will glide smoothly upon the vane
1. . N without ““ shock " or eddying (which is always to be avoided,
since it causes waste of energy). The vane is curved back-
ward from 1 to N so as to produce (if its motion is not too rapid)
a deviation of the motion of the water particles from the rec-
tilinear path they would otherwise pursue into a curved path,
1..N’ (absolute path). This deviation is accompanied by
a gradual diminution of the absolute velocity of the water.
(If the vane were stationary, there would be practically no
change in the absolute velocity.) On the arrival of the water
particles at the outer rim of the wheel the outer extremity N
of the vane has come to the position N’. The relative velocity
at N’ (i.e., relatively to the outer end of vane) has now a differ-
ent value, c,, from that at the point of entrance and is, of
course, tangent at N’ to the vane curve. The point N’ of the

outer rim of wheel has a velocity v, equal to ?vl (from the
1

proportion wy:v,::r1:7r,); and a parallelogram formed on v,
and ¢, as two sides, will determine the value of w,, the abso-
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lute velocity of the water at exit, as being the diagonal N'C’
of this parallelogram.

It is seen that w, is much smaller than the corresponding
value w; at entrance. Denote by & the angle between ¢, and
a line, N’T’, drawn tangent, at N’, to the outer rim of wheel.

To determine the best value (i.e., conducive to greatest
efficiency) for the velocity v; (or v,) we must note that the
kinetic energy carried away per second by the water at exit,
Qr wa?
g 2 :
that w, should be as small as possible. Inspection of the
parallelogram of velocities at N’ shows that a small value for
the angle 8, and equality between v, and c,, conduce to a
small w,. Now the angle d cannot be made equal to zero,
but may usually be made as small as 15°; it is quite feasible,

viz., should be as small as possible; and this means

however, to have Ch=%n; « + .+« « « « « . (@

which assumption will therefore now be made and the result
noted.

- Bernoulli’s Theorem without friction (eq. (13), § 42) may

now be applied to the steady flow between 1 and N in the

rotating channel here presented (it being noted that the water

is under atmospheric pressure both at 1 and N so that the

pressure-heads cancel out), leaving

ci2—ci2=v.2—v% . . . . . . (2
in which if we put c¢,=v, from eq. (1) there results ¢; =,
which shows that the parallelogram at point 1 must be made
a rhombus. Hence, from trigonometry,

W1
“Seosa  C t oo 3

as the best value for the inner wheel-rim velocity. The re-
sistance R’ should therefore have a corresponding value (in con-
nection with v') to prevent acceleration of the velocity beyond
this speed. Evidently 3 must be made equal to 2a.

~ 54. Power of the Girard Impulse Wheel.—The power of the
wheel due to the action of the water, at this special speed, is

N
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now obtained by using the formula in eq. (10) of § 34, viz.:
. L=%[ulvl —Unln), « o ¢ o . . (4)

in which %; and u, are the ‘“‘velocities of whirl”’ of the water
at entrance and exit respectively; i.e., the projections of the
absolute velocities w; and w, upon the tangents to the two
wheel-rims.

Evidently u;=w; cosa. As to u,, note that since ¢, is
to be equal to v, the triangle N’C’T” is isosceles and that

hence the angle C'N'T" between w, and v, is 90°—g— ; hence

) . 0
Up =W cos[90°—-2-], OF Up =W, Sin 7. We have, also, from the

. 0 " .
same triangle, w,=2v, sin 2 substitution of all of which

. . 7 . .
values in eq. (4), with v, = , and v, =r—"v1, gives rise to
1

wy
2cosa
the relation
2 1.2 sin2 /2
[ "1 cota

()

(N.B.—This is identical with what would be obtained in

another way, viz., by deducting the kinetic energy —- Qr 2

carried away each second by the water at exit, from the kmetlc
2

energy 77’ le arriving each second at the entrance 1. There

is no change in pressure energy, nor in potential, between

entrance and exit.)

If the whole head, h, of the mill-site be considered as pro-
ducing the entrance absolute velocity w; (or wy ="'2gh), fric-
tion being thus entirely ignored in the supply-pipe and nozzle,
just as it has been, so far, in the wheel itself, eq. (5) may be

written
R =0 1- (rl) (S‘c'(‘):i 2) ] .. ®
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It is seen from eq. (6) that the theoretical efficiency

Rv Tn 2/sin 0/2\2 .
”=6ﬁz=1‘(rl><cosa)’ @

from which it is evident that not only does a small value for
d, but for a as well, conduce to an increase of efficiency; though
a value less than 20° for « is rarely used.

On substitution of the values a=20° 6=15° and r,+n
=1.25 we obtain =97 per cent.; but in actual practice it
rarely rises over 80 per cent., on account of friction and im-
perfect guidance of the water.

For inward-flow Girard wheels the theory does not differ
from the foregoing, but the angle & at the exit-point must
be taken a little larger.

55. Numerical Example. Girard Impulse Wheel.—With a
head of h=144 ft. and a water-supply of @ =2 cub. ft. per sec.,
it is required to design an outward-flow Girard wheel with
parallel crown-plates, taking a=25° 0=20° and the ratio
rn+11=4-+3. The foregoing theory will be applied, with no
account of friction, at first, except in the nozzle. There being
supposed to be no loss of head between the surface of head-
water and the jet, except in the nozzle itself, we have

wy =0.95V 2gh =0.95V/64.4 X 144 =91.4 ft. per second.

The best velocity for the inner rim will then be, from eq. (3),

w914
V=5 cos &~ 2%0.906 002 ft- per sec.

(With friction considered, this might be reduced to 47 or
48 ft. per sec.)

If it be desired that the wheel make 240 revs. per minute,
or 4 per sec., we obtain a value for r,, the inner radius, by
writing 4X27r; =50.5; obtaining r;=2.01 ft.; and hence
rn=(4:3)r;, =2.68 ft.

As to e, the proper distance apart of the two flat crown-
plates, or rings, if the “free jet ” at point 1 (Fig. 37) is given
a horizontal thickness of {,=3% inch, the vertical dimension of
its rectangular cross-section will be e, and we may write Q =etow,,
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whence
2 .
e=m=0,350 ft., =4.2 inches,

While the theoretical efﬁclency would be

r, sin 0/2 4 0.174\2
= [ (rl cosa)] =1_<§'0.906> =0.93,

the actual performance would probably be in the neighborhomi
of from 75 to 80 per cent. On the basis of 75 per cent. the
useful power would be

L, =R, =0.75Qrh=0.75X2 X 62.5 X 144,
=13500 ft.-lbs. per sec.; =24.5 H.P.

If the radius 7’ of the pulley (on same shaft as water-wheel),
to whose circumference the resistance R’ is to be applied, is
7/ =1 ft., the velocity of a point in that circumference would be

r/

v, = 201><505 =25.2 ft. per sec.; and therefore the
necessary value of R’ would be '
R =2 =232 _ 536 Ibs.
v 25.

56. Bell-mouthed Profiles.—When the distance between the
two crown-plates of an outward-flow Girard wheel is the same
at outlet as at entrance of the space between two adjacent
vanes a small value of the angle é may occasion too narrow a
passageway between the vanes at exit. If, however, the
crowns diverge toward exit, making what is called a ““bell-
mouthed ” profile, the stream of water becomes thinner per-
pendicularly to the vane, on account of lateral spreading along
the surface, and choking of the passageway is prevented.

Openings are frequently made in the crowns to facilitate
the escape of air, with the same object in view.

57. Practical Construction of Girard Wheels.—The Girard
wheel is a favorite type in Europe, some motors of this kind
developing as much as 1000 horse-power.

Several are working at the Terni Steel Works, in Italy,
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from 50 to 1000 H.P., under a head of nearly 600 ft. One
of the smaller of these is shown in Fig. 38 (on p. 74) in which
W is a hand-wheel for opening the gate in the main supply-pipe,
P. The wheel revolves on a horizontal shaft S and is seen to
be of outward-flow and * bell-mouthed ”’ design.

.The larger wheels at Terni are practically of the same
general design. In the case of the 800-H.P. wheel which
drives the rolling-mill machinery, frequent stopping and start-
ing being necessary, a lateral pipe 8 ins. in diameter is provided,
opening out of the main supply-pipe, whose diameter is 24 ins.,
the gate of the smaller pipe being so connected with the gates
admitting water to the wheel that when the latter are closed
the former is opened and vice versa. In this way the motion
of the water in the main supply-pipe, which is very long, is
not entirely checked when the water is shut off from the wheel,
but finds a vent through the smaller pipe; and thus “ water-
hammer " (i.e., excessive rise of pressure) in the main pipe is
prevented. (See § 125.) The outer diameter of this wheel is
9 ft. 5 ins.; the inner, 8 ft. 2.4 ins. The distance between
crowns at entrance is 4.91 ins.; that at exit, 16.14 ins.; and
the quantity of water used is Q=16 cub. ft. per second, while
the normal speed is 200 revs. per min.

In Fig. 40 is shown a vertical section, through the axis of
shaft and also of supply-pipe, of a 1000-H.P. Girard wheel at
Vernayaz, Switzerland; one of six in an electric power-
station, each of 1000 H.P. and working under a head of 1640 ft.
The velocity, v,, of outer rim is normally 184 ft. per second.
The outer diameter is of the wheel 2.150 meters, or about
6.5 ft.; and that of the supply-pipe, 0.30 meters. To prevent
too rapid “speeding up "’ of the wheel when the resistance, R,
or “load,” is diminished, two heavy steel rings are shrunk on
the wheel on the outside (these are seen in section in Fig. 40),
and thus form a fly-wheel. As is evident from the figure, the
profile between crowns is “bell-mouthed.”

Fig. 39 gives a cross-section at right angles to the shaft
and midway between crowns, and shows the nature of the
nozzle and of the regulating apparatus. Through action of
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the centrifugal governor-balls at C, and the intervening me-
chanism, when the “load ” on the wheel changes from the
normal, and a slight change of speed is thus brought about,
one edge of the rectangular opening which forms the jet is caused -
to move, and thus to diminish or increase the thickness of the

jet, and thus vary the amount of the working force acting on
the wheel.



CHAPTER V.
TuRBINES AND REAcCTION WHEELS.

58. “Reaction Turbines.”—A turbine proper, or ““reaction
turbine,” is a hydraulic motor consisting generally of two
crown-plates or shells (surfaces of revolution) mounted on an
axle, the space between the shells being divided by rigid curved
blades or vanes (‘“buckets’’) into numerous curved passage-
ways, or channels, distributed regularly around a circum-
ference. The mouths of these channels receive water simul-
taneously, and all around the periphery, from the extremities
of certain fized guide-channels and discharge it at the turbine-
channel exits either into the atmosphere or into a space filled
with water (whose internal pressure is frequently less than
that of the atmosphere).

The special feature of the turbine as distinguished from
Girard wheels is that all of its channels or passageways
are simultaneously in action and are completely filled with
water, flowing under pressure. By the proper design of the
wheel or turbine, and restriction of its velocity of rotation (as
accomplished by the imposition of a certain resistance), the
course of the water is so deviated from the path it would take
if the wheel were not present that its absolute velocity is grad-
ually reduced, and its internal pressure brought to an equality
with that of the space into which it is discharged; so that the
water exerts pressure or working forces against the vanes, thus
enabling the turbine to maintain its uniform motion notwith-
standing the resistance. In steady operation the flow of the
water is ‘“steady,” or permanent, as already defined.

59. The Reaction Wheel, or Barker’s Mill. Theory. (This
' 83
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theory will now be given, as preliminary to that of the modern
turbine.)—A simple form of reaction wheel consists of a single
rigid casing secured transversely to a vertical axle, and is pro-
vided with two small orifices in the vertical sides of the casing,
each facing backwards as regards direction of motion, and
equidistant from the axle. (See Fig. 41.) A water-tight joint
at n prevents leakage when water is passing from reservoir W,
by the fixed pipe m..n, to, and through, the moving pipe and
casingn. .AB. The area, F, of each orifice is supposedly small

Fia. 41,

compared with the cross-section of the casing, AB, so that
the relative velocity of the water in the main body of the latter
may be considered to be zero. The horizontal plane of rota-
tion of the centers of the orifices is h feet below the reservoir
surface, and the absolute velocity of the water at the point o
in the casing (in the axis of motion of the latter) is so slight
that the internal fluid pressure there is practically p,+hy
(where p, denotes atmospheric pressure). As above indicated,
the relative velocity ¢; of the water at o is to be taken as zero.
A moderate resistance, R’ 1bs., being provided (tension in a
rope winding on drum, say, as shown), and the two orifices
being opened (whole apparatus originally full of water), a flow
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begins and the motion of water and motor soon adjusts itself
to some constant speed of rotation, the linear velocity of the
center of each orifice, at distance 7, from the axis, assuming
some value v, corresponding to which a point in the rope,

or periphery of the drum, has a velocity ¢/, r'v,., where 7’

is the radius of the drum. In other words, a steady flow for
the water, and a uniform rotary speed for the motor, have set
in. It is now required to find the proper value of v, that the
useful power, R’v/, may be a maximum, considering friction
at the orifice (only).

The absolute velocity of the jet of water at exit B (in the
contracted vein, where the filaments have become parallel
and are therefore under atmospheric pressure) is evidently

Wn=Cn—Vny =« « « « « « ..(1)
where ¢, is its velocity relatively to the orifice.

Noting that AB is a uniformly rotating pipe, ad taking o
as an up—stream point where the relative velocltylg zero and
the pressure is p,+hy, and B (jet in air) as a down-stream
point where the relative velocity is ¢, and the pregsure=p,,
these two points-being at the same level, and considering the

2
one loss of head A", =C;Lg at the orifice, we may apply Ber-

noulli’s Theorem for such a case (rotating casing; see eq. (13a)
in § 42) and obtain
Cn? Pathy v2-0 c,?
29 " r SO Ty Gy B
Here ¢ is a “coefficient of resistance ”’ for the orifice and is
found by experiment to have a value of about 0.125, or ,
for the present case; the orifice being in thin plate, or rounded.
This reduces to

h= (1+c)%_5 P )

'The weight of water passing per second in steady flow being
Qr, let us apply the equation of ““ angular momentum,” eq. (10)
of § 34, to this case, viz.:
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R',/,%’(ulv,—u,v,.); (ft.dbs. persec), . . (4)

u, and u, being the projections of the two absolute velocities
w, and w, (at entrance and exit) upon the ‘‘ wheel-rim’’ veloci-
ties v; and v,. Now, in the present case, at the entrance-
point o (see Fig. 41) the absolute velocity of the water is prac-
tically zero (large passageway), and the velocity of that point
of the motor is v; =zero. At the point of exit (jet in the air)
the velocity of the mid-point of the orifice is v, and the pro-
jection of the absolute velocity upon the line of v, is w, itself,
which is numerically equal to ¢, —v,; but since this projection
points backward with respect to the motion of the wheel we
write it negative in the substitution; and hence eq. (4) re-
duces to

R’U=%(0—[—(cn—vn)]v”); P ()
or, RV =%(cn'—vn)vm =%r(6,.v,.-—v,.2). e s = (6)

Now the efficiency of the motor is =Rt +Qrh; hence, sub-

stituting from (6), and the value of A from (3), we have
2(Cnvn_vn2)

v—m.......a)

In (7) we have 5 as a function of two variables, ¢, and v,,

but it is of such a character that it can be reduced to a function

of the one variable z, if z denote the ratio c,:v,; that is, if

for ¢, we write zv,, (7) becomes
2(x-1)
7)—(1—'{‘—(—)32——1.......(8)

By obtaining dy/dr and placing it equal to zero, we derive
(z2—2z)(14¢) = —1; and, finally, taking plus sign of radical,

x=l+\/1—_f_c R )

as the special value of x that makes the efficiency a maximum.
With ¢=0.125, or §, we find, from (9), =4, whence ¢, =§v,;
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and also, from (8), a value of =%, or 663 per cent., as the
maximum efficiency.

For this maximum efficiency to be obtained it is necessary
that v, be regulated to a value of v,=%2gh, as obtained from
eq. (3) when for ¢, we write §v,. At this special speed we
find also that the maximum power for a given Q is R'v/ =4Qrh;
and that the absolute velocity at exit, =wa, =c, —v,, =4(V 2gh);

2
so that % 30—2"— = }Qrh.

That is to say, of the whole power of the mill-site (viz.,
Qrh ft.-lbs. per sec.) two thirds is usefully employed in over-
coming the resistance R’, one ninth is carried away in the
effluent jet in the kinetic form, while the remaining two ninths
is lost in friction at the edges of the orifice (when the speed
is regulated as above stated for maximum effect). In order
that the whole available flow, @ cub. ft. per sec., may be utilized
at this special speed, the aggregate sectional area of the two
jets, in the contracted vein where the filaments are parallel and
relative velocity is cn, must have a value of 2F =@Q +c,.

If no friction whatever were considered, ¢ would be zero in
eq. (9), giving =1, or ¢, =v,, and yp=unity from (8). But this
is impossible since from eq. (3), which gives ¢, =V'2gh +v,2 when
¢ is zero, ¢, is always greater than v,. It is evident, however,
that as greater and greater speed is permitted, the ratio c, +v,
decreases towards a value of unity, and since h is constant,
may be made to differ as little as we please from unity by =
proper increase of v,. While, mathematically, the efficiency
would not become unity except for v,=infinity, it would be
high for values of v, which are not excessive; e.g., for v,=V' 2gh,
V/4gh, and V'8gh, we should find 7 to be 0.83, 0.90, and 0.94,
respectively. This is, of course, for the ideal case of no fric-
tion. With great speeds of rotation fluid friction increases
fast, as also the resistance of the air to the motion of the motor.

Weisbach’s experiments with a small reaction wheel some
3 ft. between the two orifices under a head of h=1.3 ft. con-
firmed the above theory where friction at the orifice has been
considered, with ¢=0.125.
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In the foregoing theory it has been virtually supposed that
-() was constant at all speeds of rotation; which implies a vary-
ing size of orifice, since @=mFc,, where m is the number of
orifices and F the sectional area of the contracted vein of jet;
that is, a different F would apply to each different speed. If
the value of F were fixed, Q@ would be variable, depending on
the speed; and the outcome of the theory would be different.
However, if a special value of @ is desired to be used at any
particular speed, a proper size of orifice is easily computed
to secure this result, since eq. (6) is independent of the size
of orifice so long as the latter is small compared with the sec-
tional area of the casing.

60. Reaction Wheel. Theoretical Points.—The reaction
wheel, though now obsolete, presents some interesting theo-
retical features. The expression for the useful power, R'?/,
as already derived, and stated in eq. (6), may be transformed
as follows.

It may be written thus:

R =%[2cnvn—vn2—vn2]. N ¢ (1))
We may then, in the bracket, add the quantity 2gh +v,2 —¢c.2,
and subtract its equal, c,? (see eq. (3)); whence

R =%[2gh +0n2 = £Cn2 — (Cr2 — 20aVn +,2) —0,2];  (11)
which, since ¢, — v, =w,, reduces to
, Qr w2 {ea?
Ry =Qrh—15-0r(5)), - - . . (12)

which is the same expression for the power as might have been
derived by deducting from the whole theoretical power, Qrh,
of the mill-site, the kinetic energy carried away each second
by the water in the effluent jets by virtue of its absolute veloc-
ity w, and the power lost in friction at the orifice (i.e., the
product of the lbs. of water flowing per second by the “friction-
head,” or “loss of head,” due to the passage through the orifice.

61. Working Forces in Barker’s Mill.—Another interesting
matter is the nature and position of the actual working forces
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or pressures which are exerted on the inside wall of the casing
during steady operation, enabling the motor to keep up the
motion uniformly notwithstanding the resistance R’.

Fig. 42 shows a horizontal section of the casing of Fig. 41,
but- it is now supposed to have vertical side walls; the two
orifices indicated being under
like conditions. The rotation is
counter-clockwise, with a con-
stant angular velocity w, so that
v, = wr=linear velocity of orifice.
B is the jet, in the atmosphere,
having, at the contracted sec-
tion where the sectional area is
F, a velocity c, relatively to the
orifice. The casing is so wide
that at B’, in the interior, just
inside from the orifice, the rela-
tive velocity of the water is
practically zero, while its abso-
lute velocity at B’ is v,, =that
of the orifice itself. At C the
excess of pressure of the water
against the vertical wall of cas-
ing over that on the corresponding portion of wall from which
the orifice is cut out, or “reaction’ of the jet on the casing,
is a force P whose value, according to p. 800 of M. of E., is
P =2¢?Fhy, friction at the orifice being considered. But the
h of this expression was equal to the (v2+2g) of p. 800, v being
there the velocity of the jet relatively to the vessel (=c, in
our present notation), and ¢ the ‘coefficient of velocity,”
which is the same as 1 +V'14¢ (see p. 706, M. of E., and eq. (2)
of the foregoing). That is,"at C we have a working force of

Frc. 42.

Cn2 Cn
P=2Fr3, =Q; s (bs) . . . (13)

and a similar, equal, force in connection with the other orifice.
At first sight it might seem that all other horizontal pres-
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sures on the inside walls of the casing were balanced; but.
since the water is being caused to travel out from the center
o toward the position B’, acquiring an increasing absolute
velocity as it proceeds, the casing has to att as a centrifugal
pump to that extent and consequently must encounter re-
sisting forces due to this cause. This resistanoce consists in
the fact that the water pressures along GH (and G”H”), the
rear vertical walls of the casing, are greater than those along
DE (and D"E"), the front walls. These pressures constitute
a couple in a horizontal plane whose moment M’, may be
found from eq. (9a) of § 34, i.e.,

o =%[u1r1—u,,r,,] ... (ftdbs). . . . (13a)

Here u; and u, are the tangential components of the abso-
lute velocities of the water at the two points in the rotating
casing between which the forces in question act, viz., o and
B’ in Fig. 42, and r, and 7, the two corresponding radii. Evi-
dently u, is zero and u,=v,; therefore

M'=—%v,.rn. C e e e (19)

The negative sign shows that this couple tends to retard
the motion of the casing instead of furnishing working forces.

We are now able to formulate the net power (ft.-lbs. per
sec.) due to the two working forces P and P and the resisting
forces constituting the couple whose moment is M’; remember-
ing that the work done per second by the couple is the product
of its moment by the angular velocity  of the casing, i.e.,

R'v =2Pv, — w[%rv,.r,.]. N ¢ 1)

Substituting v, for wr, and, for P, its value as found in
eq. (13), we have

Rv =%(cnvn—vn2) c e e o = . (16)

ft.-Ibs. per second, as before obtained; see eq. (6).
The foregoing applies equally well to a casing of any form
(orifice small, however) when in place of the pressures on the
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vertical sides of the present form we substitute the compo-
nents, in plane of rotation and tangent to motion) of the actual
pressures on interior walls.

62. Development of the Turbine.—Barker’s Mill was im-
proved by Whitelaw and given a form resembling that shown
in Fig. 43, called the Scotch turbine; furnished with three
orifices, which were made adjustable in size by movable flaps,
to provide regulation of the quantity of water used and power
developed.

Fia. 44.

We next find in Combe’s turbine (Fig. 44) many jets, occupy-
ing the entire circumference, guided between vanes, or blades,
fixed in a ring attached to a shaft, the water being supplied
from underneath through a fixed pipe or tube. No interior
fixed guides were provided to direct the water at any special
angle upon the moving vanes. Fig. 44 shows a vertical sec-
tion of the wheel and vertical shaft, viz., BACAB; and supply-
pipe DD; also a horizontal section, H, of one half of the wheel.
Passing from the fixed pipe DD outwardly through the wheel,
the water completely fills the passages of the latter and is dis-
charged at the outer rim, around the entire circumference,
with a relatively small absolute velocity into the atmosphere.
The Cadiat turbine was practically the same as Combe’s, but
the supply- pipe was placed above.

In 1826 the French engineer Fourneyron improved the
Cadiat turbine by placing fixed guide-blades just inside the
wheel-ring around the entire circumference, by means of which
the water received a forward direction of motion before enter-
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ing the channels of the moving turbine. This rendered attain-
able a very low value of the absolute velocity of the water
at exit from the outer rim of the wheel-ring. Also, the wheel
being operated under water, the complete filling of the wheel-
channels was insured when properly designed. This was the
first modern turbine: a motor which, as varied and improved
by Fontaine, Henschel, Jonval, and others in Europe, and by
Boyden and Francis and their successors in America, has grown
in popular favor and, together with the impulse wheels already
described, has almost entirely supplanted the old forms of
vertical water-wheels so long considered as giving the highest
efficiency.

It is the peculiarity of the turbine proper (or ‘‘reaction
turbine,” as distinguished from a Girard impulse wheel or
“Girard turbine ”’) that the power to be transmitted to the
wheel by the water is present at entrance partly in the form
of pressure energy and partly in that of kinetic; since the
pressure of the water at entrance is usually above that of the
atmosphere.

M 63. Description of a Simple Fourneyron Turbine.—Fig. 45
shows in the upper part a vertical, and in the lower part a
horizontal, section of a simple design of a turbine of the Four-
neyron type (or ‘“outward-flow, radial turbine ”’). A case has
been chosen of a ‘“low-pressure ”’ turbine, or one for which no
long supply-pipe or penstock is necessary, the turbine being
placed at the bottom of an open wheel-pit.

The water from the head-bay or head-water, H, descends
slowly through the tube, or short penstock, PP, which is firmly
supported and is provided with a prolongation, CC, or cylin-
drical gate, movable vertically and having rounded edges on
its lower periphery. This lower edge is also slotted to receive
the curved stationary guides which are shown (in the hori-
zontal section) at G and which are rigidly attached to the
fixed plate c. .c.. This plate is supported from above by means
of a pipe enclosing the shaft of the turbine and serves also to
protect the lower shell DSD of the turbine from the pressure
of the water in space CG.
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The turbine itself and its shaft are shown in vertical sec-
tion by solid black shading; viz., EDKDE. EE and DD are
the two crowns, or horizontal rings, between which are inserted
the curved vertical vanes shown in outline in the horizontal
section at W. The lower shell of the turbine provides for the
rigid connection of the turbine proper (or crowns and vanes)
with the shaft, and may be lightened by perforations. The
turbine illustrated in Figs. 17, 18, and 19 (opp. p. 42) is prac-
tically of this design. The resistance R’, which the wheel is
overcoming, is shown in Fig. 45, as acting at edge of pulley M,
keyed on shaft of wheel. The velocity of the edge of the pulley
is v ft. per sec. .

Fourneyron placed a number of horizontal partitions between
the crowns, thus dividing the turbine into several stories, for
the purpose of preventing in some degree the loss of head,
and consequent loss of power, resulting from the sudden en-
largement of passageway which would occur when the turbine
is operating at ‘“‘part gate,” if this device were not adopted.
In turbine parlance, ‘“full gate,” or ‘‘ whole gate,” refers to the
fact that the spaces between the fixed guides, G, are fully
open, the gate being then fully drawn up, as in Fig. 45; its lower
edge being even with the upper crown. In Fig. 46 is shown

Fia. 46.

a section of a Fourneyron turbine furnished with horizontal
partitions of the kind mentioned. When the lower edge of
the gate is even with one of these partitions only those portions
of the channels which are below this partition are in action,
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and the efficiency of the turbine, when thus working at ‘“part
gate”’ and using less than the usual quantity of water, is not
materially changed.

64. Notation for Theory of Fourneyron Turbine.—In Fig. 47
is represented a portion of the turbine, and corresponding
guides and guide-channels, in horizontal section. The turbine
channels mn, etc., are so many closed pipes, supposed com-
pletely filled by the water when the turbine is in operation.
Let F,=the sum of all the sectional areas like nd of the
turbine channels at the outer circumference; and F, the sum
of all those like md, between the stationary guides, where
the water is just leaving them to enter the turbine or wheel.

Let w, denote the absolute velocity of the water leaving
the guides at point 1, Fig. 47 (and at A in Fig. 45). Also,
in Figs. 47 and 48, let w, denote the absolute velocity of the
water leaving the wheel at the exit-rim, N, being represented
in amount and position by the diagonal of the parallelogram
formed on c¢,, the relative velocity at N, and v,, the velocity
of the outer rim of the wheel itself.

Similarly, at point 1, the absolute velocity, w;, of the water
entering a wheel-channel is the diagonal of a parallelogram
formed on its relative velocity at that point and the velocity,
v, of this inner rim of the wheel. Note that in each case the
diagonal meant is the one which springs from the same corner
as the ¢ and the v. (For relative and absolute velocity, see
p. 89, M. of E.)

If the wheel is run at the proper speed and the angle g
has been given a corresponding suitable value, such that the
tangent to the vane curve at 1 coincides in position with the
relative velocity ¢, (velocity of the water leaving the guide
extremities relatively to the point 1 of the inner wheel-rim),
there will be no “elbow ”” or sharp turn in the absolute path
of the water as it enters the wheel, but that path will be a
smooth curve throughout its whole extent. See curve G..1. .N
in Fig. 47. In this way, impact or ‘“shock ” at entrance is
avoided and the corresponding loss of energy due to the internal
friction of the water.
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This relation being stipulated, it follows that the absolute
velocity of the water just entering a wheel-channel at 1 is prac-
tically the same as the absolute velocity that it has on leaving
the guides; both being therefore designated by w;.

Fig. 49 shows by a vertical section the notation used for
vertical heights. That from the surface of head-water to that
of tail-water, =h; while the
heights of these surfaces
above the horizontal plane
passed through a point of
turbine half-way between
the two crowns are h; and
h. respectively. The radii
of the inner and outer edges
of the wheel are r; and r, ===t
respectively; see Fig. 48.
The height of wheel, or verti-
cal distance between crowns,
is e; the same in this case
both at entrance and exit of
a whecl-channel. The mean-
ing of the angles a, 8, y, and
0 is evident in Fig. 48. @ denotes the number of cub. ft. of
water used per sec., in steady flow. Let p; be the internal
pressure of the water at entrance of the wheel; and p, that
at exit from the wheel, i.e., at N.

65. Theory of the Fourneyron Turbine. Friction Disre-
garded.—The quantities Q, hy, hn, 7, 71, T, @, and 0, being
given; it is required to determine the “best ” value for the
velocity v, of outer wheel-rim (i.e., inducing the highest effi-
ciency); and the proper height, e, between crowns that the
whole available rate of flow, ), may be used. We shall find
that in the relations to be written out nine unknown quanti-
ties are involved, viz., vy, Ua, W1, Wx, €, €1, Cn, P1, and p,, and
it is evident that for a complete solution nine independent
and simultaneous equations will be needed. For the present
all friction will be disregarded and the simple design already
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shown in Figs. 45 to 49 inclusive will be the one treated. We
suppose the cylindrical gate raised to its full height (“full
gate 7). ‘
The necessary equations are the following:
From the parallelogram of velocities at entrance or point 1:
cl=wi2+r2-2wrrcosa. . . . . . (1)
Similarly, from the parallelogram of velocities at exit, or N,
w2=c,2+v,.2—2c,vpc080. . . . . . (2
Thirdly, applying Bernoulli’s Theorem for a stationary rigid
pipe and steady flow of water (see p. 654, M. of E.) to the
surface of the head-water, as up-stream position, and the point

1, where the water leaves the guides, as down-stream position,
we have

2
p—rl“}“T);:b'*‘h‘ . . . . . . . (3)

(where b is the height of the water barometer).

In its progress through a wheel-channel from 1 to N the
water is flowing with steady flow through a closed pipe rotating
uniformly in a horizontal plane and we may therefore apply
Bernoull'’s Theorem for Steady Flow in a (uniformly) Rotating
Casing to this part of the path of the water; hence (see eq. (13),
§ 4D

Pn_ci®  p1, (va2—v1?)
st ot ey s @

Since the kinetic energy carried away per second by the
water at exit is Q_g)’ 7, and this may be made small by m:k-
ing v, =c, in the parallelogram of velocities at N (in connection
with a small value for the angle d) (see also § 53), we shall
write Vn=Cne + + o« « o« « . o (5

The aggregate sectional area, F,, of the wheel-passages at
exit may be expressed thus: The area of cross-section of any
one channel, taken at right angles to the vane, at exit, is (see
Fig. 47) F’=eXnd; but nd is =nn’-sin 6, and hence F’'=
nn/-e-sin §; but the sum of all the short linear arcs like nn’
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making up the entire outer periphery of the turbine (if we
neglect the thickness of the vanes) is 2zr,, whence it readily
follows that F, =27, sin 8. Similarly, we have Fo=2zr; sin a.
But Q=F,c,, and also =Fow;; therefore we have
[27rie-sin a]wy =[27rme-sin dlc,, . . . . (6)
as also ,
Q=[27rpe-sindle,. . . . . . . (D
Since v;=wr; and v,=wr, (w being the angular velocity of
wheel), it follows that
V) FVy =Ty T B )]
Also (see below) Pn=rha+pa. . . . . . . (9)
66. Combination of Foregoing Equations.—Since the water
is supposed to leave the wheel at N in parallel filaments, the
outer of these filaments being subjected to the hydrostatic
pressure yh,+pa (where p, is the pressure of the atmosphere)
from the surrounding still water in the receiving pool or tail-
water, the internal pressure of the water at this place may

be taken as pn=7hn+pa.; ie., p—;=h,.+b (where b=£r‘3 is the
height of the water barometer). This value being substituted
in eq. (4), as also the value of 1;—1 obtained from (3), eq. (4)

becomes

2 w2
+h1—hn+b—b—2—;. . . (10)

This last equation, on substitution of the value of ¢;2 from
(1), reduces to

2wty cOS @ +¢x2 —v.2=2g(hs—hs). . . . (11)
But ki —h.=h; and, from (5), ¢, =2y, so that (11) becomes
wvycosa=gh. . . . . . . (12

Now, from eq. (6), w1 = (cary sin 8) +(r; sin @) ; and, from (7),’
¥y =T1Vp +Tn; also c,=v, from (5); therefore (12) becomes
gh tan a

sind ’

Velocity of outer rim for a maz. efficiency =v, = (13)
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As will be seen later, this value may be reduced by 8 per
cent. of itself to allow for friction, and the resulting reduced
value used in eq. (6) for the determination of w;, the relation
cn =7, being practically independent of the consideration of
friction. We are then in a position to find the angle g8 at
entrance, the angle a being given and the values of w; and v;,
= (71 +75,)Vn, being now available.

This angle 8 determines the position which the vane-tangent
at entrance should have to avoid impact or “shock” at that
point; ie., the vane-tangent at 1 should follow the direction
of the relative velocity ¢,. The vane-tangent at exit, N, must
make the given angle & with a tangent to the outer wheel-
circumference at that point. The form of curve to be given
to the vane between points 1 and N is theoretically imma-
terial, so long as the curvature is smooth. Two circular arcs
may be used, the radius of the part near 1 being about one
half of that of the other part. To a guide-blade is generally
given the form of a single circular are.

67. Shorter Proof of Foregoing Eq. (12). (See Figs. 46-49
inclusive.)—There being no loss of energy considered to take
place between the surface, H, of head-water and the entrance,
1, of the wheel-channels, and also no loss due to friction in
those passages themselves, the difference between the aggre-
gate energy (of the weight Qr flowing per second) of the three
kinds (see § 9) at that upper surface and that at the point, N,
of exit from the wheel-channels, should represent the power,
L, (ft.-1bs. per sec.,) exerted by the water on the turbine.

The horizontal plane through N will be taken at datum-plane
for the potential energy. At H the weight Qr has Qyh, ft.-lbs.
of potential energy, zero of kinetic energy, and Qrb of pressure

energy; while at N its potential energy is zero, kinetic energy
2 n
%.%"—, pressure energy=Qr-p7, =Qr(b+hn), =Qr(b+hy—h).
Subtracting the sum of the latter three items from that of the
former three, we have
Qr w,2
L—th—g- g e e e (14)
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ft.-lbs. per second; and this should be equal to the work done
per second by the ‘“equivalent couple” (see eq. (7), § 34)
on the turbine, an expression for which work per second we have
in the ‘“‘angular momentum ” equation, eq. (10) of § 34, viz.,

L=%7:(u1v1—u,,v,.) J P ¢ 1))

(and this relation holds true, also, when friction is considered).

But u,, the projection of w; on the inner wheel-tangent,
is wycosa; and similarly, at the outer rim, wu,=wj,cos .
Hence (15) becomes

L=%(w1v1 cosa—[ws cos plvs). . .- . (16)

The right-hand members of eqs. (14) and (16) being equated,
there results
w1 €0S @ — (W, COS ,u)v,.=gh—w—é'. R ¢ 1))
Let now the parallelogram of velocities at the exit-point N
be reproduced in Fig. 50 (the direction of rotation (clockwise)
of the turbine is contrary to that of previous figures). The
condition that c,=v, for best effect has been introduced into
this figure by making it a
rhombus, with side DN
equal to side NE. The
diagonalsbisect each other
at right angles, and BN
represents 4w,.  Hence
the intersection, B, of the
diagonals, lies in the cir-
cumference of the semi-
circle described on NE (or v,) as a diameter. Hence, if BO
be drawn perpendicular to NE, BN is a mean proportional
between NO and NE; or BN2=NO-NE; ie.,
) 2
1—05 (l"—c29§£> vn; or, (w,cos ;t)v,,=—w?". . (18)
Substituting from (18) in (17) we obtain
wwvpecosa=gh, . . . . . . (19

Frc. 50.

]
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as holding good when the turbine (frictionless) is running with
speed of maximum efficiency, the same as eq. (12).

68. Note.—It is to be noted that this same demonstration
for eq. (19), with same result, will hold good whatever the
positions of the planes of the parallelograms of velocities at
points 1 and N, entrance and exit, of the turbine; since the
projections u; and u, would always be in the same lines as the
wheel-rim velocities, »; and v,, respectively. Eq. (19) holds,
therefore, for all kinds of turbines.

69. Theoretical Efficiency of the Fourneyron Turbine.—It is
evident that the value of h, or depth of the wheel below the
surface of the tail-water is immaterial, since h, is offset by an
equal portion of the height h;; hence we may formulate the
power transferred to the wheel by the water (on the present
basis; friction disregarded; i.e., no loss of head either in the
penstock between surface of head-water and entrance of tur-
bine, nor in the turbine itself) by supposing h, to be zero.
That is, this power, L, (ft.-lbs. per second,) equals the whole
theoretic power of the mill-site Qyh less the kinetic energy
carried away per second by the water leaving the wheel at N, or

2
L, =R, =th—Qg—r-’i’2l. R ¢ L

Since the condition that c¢,=v, makes the parallelogram of

velocities at N consist of two isosceles triangles (see also Fig. 50)

. 0, C .
we have w,=2v,sin 7, in which if the value of v, for best

effect as derived in eq. (13) be substituted, and the result so
obtained for w, placed in (18a), we have

. 2 tan a sin%
L, =R'v’, =Q}’h 1- W . o . (19(1)

In this case the efficiency, », =R'v' +Qrh, whence

. .0
2 tan a sm‘*’-i

n=1- (20}

sin ¢
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From the details of this expression we gather that the smaller
the angles @ and & can be made, the greater the efficiency.
In practice a is taken from 20° to 30°; and ¢ from 15° to 20°.

With the values of a=25° and 6=15° we obtain 7=0.92
from eq. (20); but in actual practice this figure is reduced to
80 per cent. or less (unless in exceptional cases) on account of
fluid friction, axle friction, and imperfect guidance of the water.
75 per cent. is a fairly good performance.

70. Numerical Example. Fourneyron Turbine.—Given h=
60 ft. and the available water-supply Q=150 cub. ft. per sec.,
and assuming radii of ;=2 and r,=2.5 ft.; with angles a and
0, 20° and 15°, respectively; it is required to design a Fourneyron
turbine having parallel crowns, etc., as in Fig. 46; i.e., to find
the proper value of the outer-rim velocity, v,, for best effect,
that of the angle 3 for the vane tangent at entrance and the
proper distance, e, between crowns, that all the water avail-
able may be used (at full gate).

Up to this point the effect of fluid friction has not been
represented in any of the formule, but a fair allowance for
it may be made (see § 71) by deducting 8 per cent. of itself
from the value of v, for best effect, as given by eq. (13) in § 66;
ie., with tan 20°=0.364 and sin 15°=0.259, we have

32.2X60x%0.364
Un =0.92\[——W

With r,=2.5 ft., this means that the wheel should be run

=48 ft. p. sec.

. 48 .
at an angular velocity of w=T5=19'2 radians per sec., or at

(19.2 +27) X 60 =183 revs. per minute.

(Should it be wished to run the wheel at a different angular
velocity, a different value of the radius r, could be selected,
so long as the value of the linear velocity v, of the outer rim
is kept unchanged.)

Since ¢, =v, we have, from eq. (6),

w; (277r1€ sin a) = v, (277 ,e sin 6)
(which holds good whether friction be considered or not); and
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hence for the absolute velocity of the water leaving the guides

VpTp SIN 0 48X2.5 0.259
rn sina 2.0 0.342

wy = =45.4 ft. p. sec.;

also,
1 =(T1) +7n=(2+2.5)48 =38.4 ft. p. sec.

To determine the vane-tangent angle, 8, at point 1, i..,
the position of the relative velocity ¢i, v; and w; being now
known and angle a being given, we have
only to solve the triangle ABC in the paral-
lelogram of velocities concerned; see Fig. 51.
Here we have two sides (w;, v1) and the in-
cluded angle («); the other two angles being .
¢ and 6, (6=180°—p3.) Hence

(w1 —v,) tan $(0+¢)
tan 3(0—-¢) = v o,
7 X tan 80°
=~ %8 =0.473;
S 3(0-0)=25°19.

Hence
6,= (80°+[25°19’]) =105° 19’;
and f,=180°—0,=74°41".

(N.B. Another method of solving the triangle and finding
B is illustrated in § 94 and Fig. 77.)

To find e, the distance between crowns, i.e., the common
height of all parts of all wheel-passages (at full gate), we have
from eq. (7) Q=2nrqe(sin d)cn,, and again write v, for c,
and obtain e=150 +(27X2.5X0.259 X 48) =0.768 feet.

As no account has been taken of the thickness of the guides
or vanes, this value for ¢ would need to be increased some-
what, perhaps 10 per cent. in some cases (see § 91 for further
details on this point).

As to the horse-power to be expected from the turbine
when run at the proper speed deduced above (183 revs. per
minute), assuming an efficiency of 75 per cent. (not an extrava~
gant figure), we have for the useful power

Fia. 51.
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R =0.75Qyh =0.75X 150 X 62.5 X 60,
=421,500 ft.-1bs. per sec.;=766 H.P.;
equivalent to the continuous raising (vertically) of a weight
of R’,=42,150 lbs., at a uniform speed of v =10 ft. per sec.
4 71. Theory of the Fourneyron Turbine, when Friction is
Considered.—Let us now consider that in the steady flow
between the head-water surface H and the outlet, A, of the

2
guides (Fig. 45) a loss of head occurs of the form (_’%, and

introduce it into eq. (3) of § 65; and furthermore that another
loss of head occurs in the wheel-channels, between entrance A

2
and exit N, of an amount Cnchg (i.e., proportional to the square

of the relative velocity at exit) to be placed in eq. (4) of § 65.
These two losses of head are the A’ and A", respectively, of
§§ 40, 41, and 42; ¢o and ¢, are abstract numbers (coefficients
of resistance; see p. 704, M. of E.). Adopting, as before, the
relation that for best effect v, should be placed equal to c,, and
combining the forms now assumed by eqs. (3) and (4) with
the other equations of § 65 (which remain unchanged in form),
we finally obtain

/5 . [2sind Tn SiD 3)2
o= (V/20h) = (\I tan a +C°(r1 ‘sin a +c") - @D
as the value of v, for best effect; that is,

(. |gh tan « \) Cor®  sind Cntan a

v,.-—( sin o ) ( 1+3 Tesmacosal 2sind ) (22)
According to Weisbach, a value of 0.05 to 0.10 may be taken
for each of the coefficients 2o and ¢,. If the larger value, 0.10,

be taken and substituted in eq. (22), with ordinary values of
the ratio r,:ry, and the angles a and d, there results

h tan «
=0.92( 9sin5 S .. (23

which explains the 8 per cent. reduction, as an allowance for
friction, mentioned in the foregoing paragraphs.
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The revolving wheel encounters friction from the adjoining
tail-water and also at its own axle. These various frictions
and the fact of leakage of water through the space between
the edges of the wheel-crowns and fixed guides render any refined
analysis out of the question. Only approximate results can
be reached, short of actual test.

72. Efficiency of the Fourneyron Turbine. Friction Con-
sidered.—If we deduct the losses of head just mentioned from
the whole head h (Fig. 45), and also the velocity head due to
the absolute velocity w, of the water at exit, we have, for
the net power (ft.-lbs. per sec.),

W, 2 w n
R'v'=Qr[h — Com 2; c,,gg] C L. (29)

and therefore, for the efﬁclency,

w2 ‘1

n= th [ —Cogy - C"Qg] +h. . . (25)

For example, if we substxtute in this equation the values
occurring in the last numerical problem (§ 70), viz., h=60 ft.;

. 0
wy =454, w,=2v, sin §=12.5, and c,=v,=48, ft. per sec.;
with 0.10 for both ¢ and ¢,; we obtain

60—-2.5-3.2-3.6 50.7
= 60 =760 ~08%
or 84 per cent. But the power lost in axle friction (R"»”) and
that spent on the resistance of tail-water on the outside sur-
faces of the crowns, etc., would probably reduce this to some
78 or even 75 per cent. (See §§99, etc., as to actual tests
of turbines.)

73. Note.—Evidently the bracket in eq. (24) represents
the work done per sec. for each unit of weight of water used;
thus, in the numerical instance above, from each pound of
water are derived 50.7 ft.-1bs. of work per sec., out of the total
theoretical 60 ft.-lbs. for each pound of water. Of the total
loss (9.3), 2.5 ft.-Ibs. per sec. is due to residual kinetic energy
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at exit, 3.2 to fluid friction in the penstock or wheel-pit, and
3.6 to fluid friction in the wheel-channels.

74. Fourneyron Turbines at Niagara Falls, N. Y.—During the
years 1894 to 1903 the Niagara Falls Power Co. constructed a
water-power ‘‘installation’ about a mile above the falls at
Niagara Falls, N. Y., involving two power-houses containing
twenty-one turbines, and a tunnel (as a tail-race) some 6700
feet in length and 490 sq. ft. in sectional area, on a grade of
7 ft. per thousand, and at a depth at its upper end of some
146 ft. below the level of the upper river. The tunnel is of a
horseshoe form in section, is lined with hard brick, and empties
at the base of the cliff a short distance below the American
Fall. The velocity of the water in it is sometimes as great
as 25 ft. per second.

In “Power House No. 1"’ each of ten vertical shafts carries
two Fourneyron turbines, each such (double) wheel or * unit ”’
furnishing 5000 H.P. and working under a mean head of 136 ft.,
- at 250 revolutions per minute, and using about 440 cub. ft.
of water per second. The wheel-pit under the power house
is an immense slot excavated in the rock, the lower part dis-
charging the water after its passage through the turbines
into the upper end of the tunnel. Each of these double wheels
has a separate penstock into which water is admitted from a
wide canal, leading out of the upper river. These turbines
were built and installed by the I. P. Morris Co., of Philadelphia;
from designs by Faesch and Piccard of Geneva, Switzerland.

Fig. 52 gives a side view, or elevation, of one of these pen-
stocks with its corresponding wheel-casing, shaft, etc. The
steel penstock, P, is 7.5 ft. in diameter, conducting water
under pressure to the wheel-casing, e. At the upper and
lower extremities of this casing revolve the two wheels, the
discharge from which issues at a from the upper, and at T
from the lower, turbine. 7T shows also the level of the tail-
water at the bottom of the wheel-pit. The height of its sur-
face is variable, depending on the number of turbines in action
at any time. Although each turbine works in a position above
the tail-water, discharging into the atmosphere, its design is
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such that all the channelways are completely filled with water,
so that it operates as a ‘‘reaction turbine’” and not as an impulse,
or ‘“tangential,”’ wheel.

S is the shaft, which for strength and lightness combined
is mainly hollow, consisting of segments of steel tubing 38 inches
in diameter, connected to each other at intervals by short
solid portions, 11 in. in diameter, running in bearings. These
bearings, however, provide only lateral support. On the upper
end of the shaft is fixed the re olving part, G, of an electric
generator, which has sufficient mass, with that of the two tur-
bines themselves, to serve as a fly-wheel.

In Fig. 53 is given a section, on a larger scale, of the lower
end of the penstock and of the wheel-casing and turbines.
Although the velocity of the water in the penstock is about
10 ft. per second, the fluid pressure in the casing e differs but
slightly from the hydrostatic pressure due to the whole head
of 136 ft. The two turbines, and their supporting shells extend-
ing out from the shaft, are indicated by solid black shading
(better shown in a subsequent figure). Rigidly attached to
the shaft S is a disc M, the space underneath which is in com-
munication with the water of the penstock, while the upper
face is open to the atmosphere. The lifting effort thus exerted
on the shaft serves to sustain the greater part of the weight
of the shaft, turbines, and generator. In other words, the
friction of a solid disec on a liquid is substituted for that of a
journal, or pivot, in a solid bearing; a gain both in convenience
and power. The excess (or deficiency) of this hydrostatic
pressure is taken up by a special thrust-bearing at the upper
end of the shaft.

The lower turbine of one of these double wheels (or ““ units )
is shown in vertical section in Fig. 54, where the solid black
shading indicates the revolving part, or turbine (‘runner”’)
itself. Between the crown-plates E and D are placed two
horizontal partitions, thus practically dividing the turbine
into three separate turbines (see Fig. 46 in this connection).
Corresponding partitions are also placed at G between the
guides. The extreme outside diameter of the turbine is 6 ft.
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2 in., and the inner diameter of the crowns is 5 ft. 3 in. The
vertical distance, e, between crowns is about 12 inches. A
portion of the turbine and guides is shown in horizontal sec-
tion in Fig. 55, where it is seen that the middle portions of
the wheel-vanes are thickened, and in such a way as to secure
more gradual changes of cross-section in the wheel-passages
than would otherwise be the case.

The regulating-gate is a vertical cylinder placed outside
of the turbine. It is shown in horizontal section in Fig. 55;
and in vertical section, at C, in Fig. 54, in which latter figure
the gate is entirely closed. A downward motion of the rods
R, R, is required to open it. The corresponding gate of the
companion turbine at the upper part of the casing (at @ in
Fig. 53) is moved simultaneously by the same rods. In this
way one or more of the spaces between the horizontal parti-
tions of each turbine is opened for the action of the water.
Though this method of regulation is usually accompanied by
a low efficiency at “ part gate,” the effect is here much improved
by the presence of the horizontal partitions. The great hydro-
static pressure on the stationary disc m (Fig. 54) forming the
floor of the wheel-casing is sustained by the rods K, K, (see
also Fig. 55,) whose upper ends are fastened to the sides of
the casing. Each turbine contains 32 vanes (or “buckets”),
while the number of guides is 36. The angles @, 8, and ¢ in
these wheels have values of about 20°, 110°, and 13°, respect-
ively.

Tests of one of these double turbines have shown an effi-
ciency as high as 82 per cent., the useful power being measured
electrically; and the consumption of water determined by
current-meters held at the entrance of the penstock.

All of the ten (double) turbines in Power House No. 1,
each of 5000 H.P., are situated in a common wheel-pit and
deliver their water into a common tail-race which empties
into the upper end of the great tunnel. Each is regulated
to a fairly constant speed by a governor of special design,
any slight change of speed affecting the angular position of
the centrifugal “fly-balls.” With any increase of speed from
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the normal the gate mechanism is thrown into gear with the
turbine itself and the gate is partially closed until the speed
returns to its normal value; and vice versa. In this way the
speed does not vary more than 3 or 4 per cent. from the normal,
even when as much as 25 per cent. of the “load” (R’), or
resistance, is suddenly removed. (In Power House No. 2,
of more recent construction, the turbines are of another type;
see § 78.)

The turbines just described are made chiefly of cast iron,
" with some smaller parts of steel.

75. The Fall River Turbine.—The Fourneyron turbine,
made at Fall River, Mass.,, by Kilburn, Lincoln, and Co., is
shown in Figs. 17, 18, and 19 (opp. p. 42). The nest of guides

fits within the inner
hollow of the wheel, or
“runner,” while the
cylindrical gate is mov-
able vertically between.
Fig. 56 gives a view of
the exterior of wheel-
case, etc. The pen-
stock is attached at P.
The turning of the
small shaft H, by
means of intervening
screw-gearing,  causes
motion of the four ver-
tical rods to which the
gate G is attached. At
T is seen the turbine
itself. By bevel-gear-
ing the turbine shaft
communicates motion,
at E, to the horizontal
shaft S, for the driving
Fic. 56. of machinery, etc. One
of these wheels was tested in 1870 by Mr. Clemens Herschel,
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and gave an efficiency of practically 80 per cent. under a head
of h=19.6 ft.; developing 130.3 H.P. at its “best speed” of
92.5 revs. per min., and using @=58.6 cub. ft. of water per
sec. The diameter of the turbine was 5 ft. 8 in., and height
of wheel-passages ¢=6.4 in. These wheels are made with
either iron or bronze buckets. .

76. Classification of Turbines.—A general definition of a
turbine may be thus stated, viz.: A water motor consisting of a
number of short curved pipes set in a ring attached rigidly to a
shaft upon which it-revolves, and receiving water at all parts of
its circumference from the mouths of other and fixed pipes
or passageways; the cross-section of all of these curved pipes
being completely filled with water during steady operation.
The principal types of turbines are as follows:

I. Radial, Outward-flow, Turbines; in the working of
which the general course of the water lies in a plane at right
angles to the axis or shaft and is directed outward, away from
the axis of rotation. (The Fourneyron turbine just tre-*
is of this type). In this case the guide blades serving to form
the fixed passageways are placed within the turbine and
deliver water to the turbine channels at the inner edge of
the turbine-ring.

II. Radial, Inward-flow, Turbines; in which the fixed
guide-passages are situated on the outside of the turbine-ring,
the general course (absolute path) of the water in the turbine
channels lying in a plane perpendicular to the axis but directed
radially inward. These are called Francis, or “ center-vent,”
wheels.

III. Axial Flow, or Parallel Flow, Turbines; in which the
absolute path of a particle of water lies substantially in the
surface of a cylinder whose axis coincides with that of the
turbine; that is, all points of this path are practically equidis-
tant from the axis of rotation. (The “Jonval” Turbine.)

IV. Mixed Type, or Mixed Flow.—In case the water enters
the turbine channels from the outside, having at first a radial
and inward direction of motion, and is later so diverted as to
leave those channels in a direction parallel to the axis, the
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turbine is said to be one of Mixed Type. Most American
turbines belong to this type of wheel. (‘“Inward and down-
ward discharge.”’)

77. Radial, Inward-flow, Turbine. (The Francis Wheel.)—
A simple arrangement of this type of turbine is shown in Fig. 57.
in the upper part of which is a vertical section of the wheel,
shaft, casing, etc.; while below is a horizontal section taken
through a point half-way between the crowns of turbine. The
section of the turbine crowns, shaft, and supporting shell, £,
are shaded in solid black. The fixed guides are placed in
the space G, on the outside of the turbine, while the curved
vanes of the turbine are situated between, and unite, the two
crowns a and e. After passing through turbine-ring the water
finds its way through the vertical tube eSe, and finally joins
the tail-water at 7. At the upper end of the shaft, which pro-
trudes through the upper floor, D, of the water-tight wheel-
casing M, is keyed a pulley, F, at whose circumference a reskt-
ance, R’ lbs., is overcome at a velocity v’ ft. per sec. By a
downward movement of the ring m the sectional areas between
the guides may be reduced; when less water is to be used.
The horizontal plate u, supported by rods from above, serves
to protect the revolving plate k& of the wheel from the high
pressure in the space M, where the water is slowly travelling
toward the guide-openings at G. The surface of the head-
water is not shown, being at an elevation above the upper
floor D (of the casing), which is therefore subjected to con-
siderable hydrostatic pressure from the water in space M
underneath.

The theory of the inward-flow turbine does not differ essen-
tially from that of the outward-flow type already given (see
§ 89, etc., where a general theory for all turbines will be given),
It will be sufficient for the moment (see Fig. 58) to note the
parallelograms of velocities at entrance (point 1), and at
exit (point N) in the inner circumference of wheel. The
same notation is used as in the case of the outward-flow
turbine; that is, the subseript 1 refers to the point of entrance
and N to that of exit. 1...N is the absolute path of the
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water in passing through the wheel-ring, and for best effect,
after the “best” value of the exit wheel-rim velocity v, has
been determined, and
the corresponding value
of the absolute velocity
wy at point 1 of leaving
the guides, the tangent
to wheel-vane at 1 must
be so placed as to coin-
cide with the position
of the relative velocity
¢1 as determined by the
values of » and w
already found. There

Fro. 8. will then be no sudden
change of direction in the absolute path of the water at the
point 1, at the entrance of the wheel-channels, and hence
no ‘“shock” and accompanying loss of energy. .

78. Francis Turbines at Niagara Falls*—In their “Power
House No. 2” the Niagara Falls Power Co. has recently installed
eleven turbines of about 5500 H.P. each, substantially of the
Francis type. Fig. 59 gives an end view of the wheel-pit show-
ing the penstock, shaft, etc., of one of the turbines. S is the
turbine shaft, chiefly tubular (3.28 ft. in diameter; of metal
# in. thick), with occasional solid portions for lateral support,
in bearings. Behind the shaft is seen the penstock, P, P,
into which the water enters at H from the upper river. The
penstock is made of steel plates 4 in. in thickness and is 7 ft.
6 in. in diameter; and conducts the water to the turbine in
the wheel-casing, E. After leaving the wheel, the water enters
the upper ends of two ‘“draft-tubes’ (or ‘‘suction-tubes,” as
they are often called), from which it is finally discharged into
the tail-water at T. These ‘“draft-tubes” discharge under
water that the air may not enter and thus prevent their flowing
full. They act like water-barometers, except that the water

* See the Engineering Record, Nov. 1901, p. 500; also Nov. and Deec.
1903, pp. 616, 652, 691, and 763.
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is in motion, the internal fluid pressure being less than one
atmosphere at points of higher elevation than the surface of -
the tail-water. Their upper extremities are not more than
about 20 ft. above the surface of the tail-water, so that the
water continues to fill the tubes after the air has once been
swept out of the tubes by the current. The draft-tubes are
placed within the walls of the wheel-pit in order that they
may not obstruct the flow of water from the other turbines on
its way to the junction (at one end of the wheel-pit) with the
great tunnel which serves as a tail-race for both power houses.
By this arrangement, also, the whole head of some 146 ft.
from the head-water to the surface of the tail-water is made
effective.

The interior of the wheel-case and draft-tubes, etc., is shown
by the vertical section of Fig. 60 (largely diagrammatic).
The water from the penstock fills the annular chamber A
under nearly hydrostatic pressure, passes through the guide-
passages at @, and enters the wheel-channels at ¢ under reduced
pressure and with high velocity. The revolving turbine, shaft,
and attachments are shown in solid black shading (except
the portion, S, of the first tubular part of shaft). There are
25 guide-blades in the ring G surrounding the wheel; the blades
and ring being of bronze, cast in one solid piece. The wheel
itself, also of bronze and cast in one piece, contains 21 vanes
or buckets in the space extending from ¢ about half-way to D,
is 5.25 ft. in diameter, and is operated at a speed of 250 revs.
per min. The water leaving the turbine-channels enters the
space D with both low (absolute) velocity and low pressure,
the pressure being practically that corresponding* to the
height of D above the tail-water surface (which is, however,
variable in position). At the lower extremity of the shaft,
while lateral support is provided by the bearing or step at R,
a great lifting force is furnished by the admission of water
under the full penstock pressure to the space U, U, on the
under side of the conical shell, or piston V, V, or ‘“balancing

* E.g., if that height were 22 ft., the pressure would be about 5 lbs. per
8q. in., only.
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disc ”’ keyed upon the shaft and revolving with it. The pres-
sure on the upper surface of this piston is small, of course,
being that of the water in the upper end of the draft-tube.
In this way the larger part of the weight of the wheel, shaft,
and armature of the electric generator is supported by fluid
pressure. The diameter of this piston or ‘“balancing disc” is
49 ft. The turbine was cast, in one piece, of manganese
bronze and weighs 4000 lbs. nearly. The weight of the whole
revolving mass, including that of the armature of the generator,
is 71 tons, to sustain which the pressure underneath the *“ balane-
ing disc” provides an upward force of some 66 tons, leaving
about 5 tons to be sustained by a ‘“suspension bearing”’ at
the upper end of the shaft.

The gate of the turbine is a cast-steel ring or cylinder mov-
ing vertically in the narrow space ¢ (Fig. 60) between guides
and wheel, and operated by rods through the space g. It is
not shown in the figure. These eleven turbines were installed
by the I. P. Morris Company of Philadelphia after designs of
Escher, Wyss and Co. of Zurich, Switzerland. Other large
Francis turbines (10,000 H.P. each) are in use by a branch
company on the Canadian side at Niagara Falls.

79. Other Large Francis Turbines.—The Shawinigan 10,500-
H.P. turbine was designed and constructed in 1904 by the
I. P. Morris Company, and installed at Shawinigan Falls,
in the Province of Quebec, Canada. It is also of the Francis
inward-flow type. A view of the wheel-case and the upper
segments of the draft-tubes is given in the frontispiece of
this book. The penstock joins the wheel-case at the lower
left-hand corner. The wheel-case is of spiral (or “volute™)
form, the space for the water being progressively narrowed
in the circuit around the ring containing the guides. As
evident from the figure the turbine revolves in a vertical plane,
its shaft being horizontal. The water leaving the turbine
toward the center passes into the two draft-tubes, the upper
curved segment of one of which is seen in the figure. The
hydraulic cylinders at the top furnish power for moving the
regulating apparatus. In this design the guide-blades are
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movable about their inner ends, as in the Thomson Vortex
Wheel (see § 80), and by their change of position the area
of cross-section of the guide-channels is varied and thereby
the quantity of water per second controlled. The movable
guide-vanes are operated by circular rings, and these rings by
the pistons of the hydraulic cylinders. The turbine or “run-
ner” is cast, in one piece, of an alloy of about 88 parts copper,
10 parts tin, and 2 parts zinc, and has an external diameter
of 7 ft. It operates under a head of 135 ft. The I. P. Morris
Co. is also building (June 1905) four turbines, each of 13,000
H.P., for a Canadian company at Niagara Falls. Each of
these consists of two wheels of the Francis type mounted on
one shaft and discharging into one central ‘“draft-chest.”
Each “runner” is fitted with solid cast guides, with cast-steel
cylinder-gates and bronze wheels, the inside diameter of the
cylinder-gate being about 5 ft. 5 in. The diameter of the
supply-pipe or penstock is 10 ft. 6.in., and that of the draft-
tube 9 ft.

The two wheels above described are probably the largest
turbine ‘‘units” that have been built, up to the present date
(Sept. 1905).

In Fig. 60a is shown a 3000-H.P. turbine intended' for a
power station at Glommen, Norway; designed and constructed
by Escher, Wyss and Co. of Zurich, Switzerland. The runner
itself is on the right. This engraving is from a pamphlet
published by the Allis-Chalmers Company, American agents
for the above-mentioned Swiss firm and manufacturers of its
designs. (See also Fig. 60b, opp. p. 124.)

" 80. The Thomson Vortex Wheel is also of the radial inward-
flow type, and was invented by Prof. James Thomson. It
is remarkable for its excellent device for regulating the flow
of water and for the fact that the outer radius is made from
two to four times as great as that of the inner, or discharge,
circumference. Fig. 61 shows a view of one of these wheels,
one-half of the upper plate of the wheel-case being removed.
From the space within the outer casing the water finds its way
into four gradually contracting passages, A, A, etc., leading
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to the wheel-entrances; i.e. there are only four guide-blades,
like RG. Each of these guide-blades is pivoted at G, very near
the extremity, so that when the blades are turned on these
pivots, the water way may be diminished in sectional area;
without, however, sensibly altering the general form of the
stream, thus avoiding any sudden enlargement of its section
at entrance of wheel with the consequent loss of energy. The
water leaves the wheel at E.

This wheel is very efficient, and is to a certain extent self-
regulating in the matter of speed; for if, through lightening
of load, the speed be¢omes augmented, the * centrifugal action”
of the water between the wheel-vanes tends to “oppose the

PIPE

Fic. 61.

entrance of water from the supply-chamber”; and vice versa
(from a report of Prof. Rankine on this wheel).

81. The Parallel-flow (or Axial) Turbine, usually called
the Jonval wheel. (It is sometimes named, however, after
Fontaine, Henschel, and Koecklin, according to slight dif-
ferences in minor details.)—In this turbine, as in the two
preceding types, fixed guides deliver the water without impact
into the wheel-passages, whose vanes are curved in such a
manner (in connection with a proper speed of wheel) that
the final absolute velocity w, is as small as possible; but the
water passes through the wheel in cylindrical surfaces sub-
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stantially parallel to the axle or shaft. Hence this type of
wheel resembles somewhat a screw-propeller of numerous
blades, bounded by two concentric cylindrical shells.

In Fig. 62 is shown a vertical section of the shaft, pen-
stock, and discharge-tube (or ‘“ draft-tube,” if turbine is above
tail-water) of a parallel-flow turbine. The sides of the dis-
charge-tube T, T, are in this case rigid prolongations of those
of the (vertical) penstock or tube P, P. S§,S, is the shaft,
to which the turbine W is rigidly attached. G is the side
view of the guide-box or fixed ring containing the stationary
guide-channels formed by the guide-blades and two concentric
cylindrical walls, BE and AC. "AB (=¢) is the radial width of
this ring. (In Fig. 64 the running part, wheel and shaft, is
shown in wide black lines.) The mouths of the guide-channels
are open all around the ring AB and deliver the water into
the channels of the turbine, W, below. The turbine is itself
a ring of channels receiving water above and discharging it
below. In this figure the width, e,, of the turbine ring at
the point of exit is equal to that, e, at the point of entrance.
But frequently e, is made larger than ey, thus producing a
“bell-mouthed,” or flaring, shape for the axial section of the
wheel-passages.

Let now a cylindrical cutting surface, aa, having its axis
in that of the shaft, be imagined to be passed through points
half-way out, radially, between the vertical walls of the guide-
ring; its radius is the “r” of Fig. 62.

The intersections made by this cutting surface with a few
of the guide-blades and turbine-vanes (these sections being
drawn in solid black lines) are shown, developed, in the middle
- of Fig. 62. The absolute path of a particle of water entering
the guide-channel at H is H ... I, through a guide-channel;
and 1...N, through the moving wheel; whose velocity is
supposed to be such, together with a proper value for the
angle 8, that there is no impact, or “‘shock,” at 1, the entrance
to a turbine channel; that is, that the whole absolute path
H...1...N (dotted) is a smooth curve, without sudden
turn or elbow at point 1.
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The points 1 and N are half-way out along the radial dimen-
sion of the turbine ring, being at a radial distance=r from
the axis. The linear velocities of these two points are of
course equal; that is, va=v,. The notation used in Fig. 62
for the parallelograms of velocities at entrance and exit is
the same as in previous figures; w, and w, being the absolute
velocities; ¢; and ¢, the relative; while », and v, are the
turbine (linear) velocities at the points in question. Each
of these parallelograms lies in a plane (vertical, here) tangent
to the cylindrical cutting surface above mentioned.

The curved plate or shell m...m prevents the passage of
the water from the penstock to the turbine except through
the guide-channels. See also Fig. 64, where a pulley, or gear-
wheel, is shown keyed on the upper end of the shaft; the
resistance R’ acting at the circumference of this wheel is over-
come through a distance v’ each second by the action of the
couple formed by the horizontal components of the water
pressures on the turbine-vanes. The vertical components
create a downward thrust on the turbine supports.

82. The Draft-tube.—Jonval was the first to discover that
a turbine, especially his own, occupying so little space hori-
zontally, would operate with practically the same efficiency
when placed above the level of the tail-water and discharging
its water into the upper end of a ‘“drajt-tube,” or air-tight tube
opening below the water surface of tail-water. So long as
the internal fluid pressure of the water can be kept greater
than zero the tube will keep full, but for this result to be attained
the turbine must not be placed more than about 25 ft. above
the surface of the tail-water.

Draft-tubes are rarely made longer than 10 to 15 ft., their
principal use being to render the turbine easily accessible for
examination, repairs, etc. Fig. 63 (on p. 123) shows a wheel-
casing receiving water from a penstock (not shown; entering
the casing from behind) and containing two turbines fixed
upon a common horizontal shaft. Each of these turbines
discharges water into a separate draft-tube. On account
of the symmetrical arrangement of the turbines the end thrusts
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along the shaft neutralize each other so that only lateral friction
is occasioned in the shaft-bearings.

In the analysis of § 65 (Fourneyron turbine) it is noticeable
that the results obtained are independent of the depth h, of
the wheel below the surface of the tail-water. A negative
h, would mean that the exit-point of the turbine is above the
tail-water, and in order that the tube into which it discharges
may flow full (after being once cleared of air) it is only neces-
sary that its vertical length shall not exceed that of the water-
. barometer (or, rather, something less; since the water in the
tube has a certain velocity and a loss of head due to skin fric-
tion occurs. (See § 532 on the siphon, p. 735, M. of E.)

When this air-tight tube is provided, the virtual surface
of the tail-water is about 34 ft. (at sea level) higher than the
actual, and a similar statement is true for the head-water.
The ‘“potential head” or “elevation head” apparently lost by
the placing of the turbine above the actual surface level of
the tail-water (within the limit indicated) is made good by the
diminution of pressure (i.e., of “pressure-head’’) at the point
where the water leaves the turbine channels.

The only additional source of loss of energy attending the
use of the draft-tube, as compared with that occurring when
the turbine discharges into a large water-filled space below
the level of the tail-water, is the loss of head due to ‘“skin
friction” in the draft-tube itself, but this may be made quite
small if the tube is sufficiently short and wide and the velocity
of the water in it correspondingly slow. If the tube has the
same width at the top (i.e., at the exit of the turbine channels)
as elsewhere, there is thereby produced a “‘sudden enlargement”

. . . W2
of section and a loss of head whose value is —

(from Borda’s

Formula, p. 721, M. of E.); the same as if no draft-tube were
used.

Draft-tubes may be employed with any class of turbine,
though the Jonval and Francis types, with their modifications,
are best adapted to its use, and have even been fitted to
impulse-wheels of the Pelton and Girard designs. But in
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this latter instance the wheel revolves in rarefied air within a
strong casing forming the top of the draft-tube; the upper
surface of the water in the draft-tube being maintained
automatically just below the lowest sweep of the moving buckets.
An advantage secured in such a case lies in the diminished re-
sistance of the air.

83. The Diffuser—In previous paragraphs, when the
statement has been made that the water.carries away with it

Qr w

at exit a kinetic energy of — ft -lbs. each second, it was

with the understanding that the pressure at that point was
that due to a head of 34 ft. (water-barometer height) in case
the pressure around the jet was that of one atmosphere; or
that due to a depth A, of still water (with atmosphere on sur-
face) between the point of exit and the surface of tail-water,
But if the current leaving the turbine channels does not
immediately enter a large body of comparatively still water,
but is guided by the rigid walls of a stationary and gradually
enlarging passageway, at the entrance of which the sectional
area is equal to that of the current; then the internal fluid
pressure at the point of exit from the turbine is not that corre-
sponding to the position of this point (hydrostatically) with
reference to the surface of the tail-water, but will be less (pro-
vided the tube conducting the water from the turbine-exit to
the main body of the tail-water is of proper design). Such
an apparatus to provide a gradual enlargement of section
for the passage of the water after it leaves the turbine is called
a diffuser and was first invented and used by Mr. Boyden of
Boston, Mass., about 1845, in connection with a radial out-
ward-flow turbine. Its use was found to increase the efficiency
of the turbine some three per cent., by actual experiment.
In the case of this type of wheel the diffuser consisted of two
fixed conical zones flaring out opposite the outer edges of the
turbine crowns, giving a ‘“bell-mouthed” or divergent profile
to the walls of the passageway at that point of the flow.*

* Somewhat as shown between n and m in Fig. 24, p. 50, but with a
much more gradual increase of section.
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(Kneass’s book on the steam-injector gives an account
of experiments on the flow of water in divergent tubes (i.e.,
in tubes of gradually enlarging longitudinal profile) which
are interesting in this connection). .

When a diffuser is provided, the ‘“pressure energy” carried
away by the water at exit from the turbine is smaller than
otherwise; and the gain in that respect aids in offsetting the
loss of energy due to the water leaving the wheel with an absolute
velocity w,. In brief, any prevention or lessening of loss of
head, either in penstock, wheel-channel, or draft-tube, is a
distinet gain to the efficiency of the turbine and its appur-
tenances.

84. Theory of the Draft-tube, with Diffuser.— Fig. 64
shows a vertical section of a Jonval turbine revolving on a
vertical shaft and pro-
vided with a draft-
tube, DM, and a dif-
fuser (stationary), nKn,
The revolving wheel and
shaft are shown in solid
black shading. It is
revolving uniformly at
best speed and the flow
of thewater is‘“ steady”’;
the power developed
being employed in over-
coming the resistance °
R’ 1bs. through a dis-
tance v’ each second at
the periphery of the
pulley, or gear-wheel,
keyed upon the upper
end of the shaft; o
being the linear velocity /
of the periphery of the Fo. 64.
pulley.

The absolute velocity of the water, which has a value w,
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at the point #» where it leaves the turbine channels, is gradually
reduced to a low value w’ in the cylindrical part of the draft-
tube; and the water finally leaves the tube at »n’’, beneath the
surface T of the tail-water, through a vertical cylindrical open-
ing with a velocity w”” (which should be small, the opening being
large) and under a pressure (ps+A”y) due to the depth A” of
still water below the surface T of tail-water. That is to say,
at the point where the water leaves the whole apparatus, flow-
ing into the full body of the tail-water, and where it is under
a pressure corresponding (hydrostatically) to the depth of this
point below the surface of the tail-water, its absolute velocity
is (by proper design) smaller than that at the point n of exit
from the turbine channels and the kinetic power thus carried
away correspondingly small. The gain, however, in this
respect would be more than offset by the loss of head between
n and n”’ if the change of absolute velocity from w, to w’ were
not brought about gradually by the gradual change of sec-
tional area of waterway between n and n’.
Let A and k" denote the elevations so indicated in Fig. 64,
d’ and I’ the diameter and length of the cylindrical portion
of the draft-tube (the tube is not necessarily vertical), and f
the coefficient of fluid friction in the same (p. 707, M. of E.);
also let F" (=2zre, of Fig. 62) denote the sectional area cf
the horizontal ring at n (to which the direction of the velocity
w, is practically perpendicular in the regular running of the
turbine at its best speed), and a” the altitude of the cylindrical
opening at n”. The small loss of head due to the gradual
enlargement of waterway from n to n’ may be represented by
U, while, as in a i h wl d o
2% , previous paragraph, co—z]— and ¢ 2% are
those occurring in the guide-channels and wheel-channels
respectively (see § 71 and Fig. 62). If we now deduct * the total
energy possessed by the flow per second at point #” from that
at point H, we obtain for the power spent in overcoming the
resistance R’ each second
Cow2  CaC2 w2 4fU w2 w”2] )

* And also deduct the lost power due to the intervening losses of head.
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In this connection we have, of course,
zd' 2w

F'y, =rnd"a"w' = T 7))
(in which @” is the diameter of the horizontal circle formed by
the edge n’’).

In order that the flow of water may fill all sections of the
draft-tube, as supposed in the above analysis, it is necessary
that during the steady flow the fluid pressure, p,, at the point
n of exit from the turbine channels be greater than zero; in
other words, that the algebraic expression for this pressure
must not lead to a negative result when applied in any numerical
case. Since between points n and n” the steady flow of the
water takes place through rigid and stationary pipes, the
application of Bernoulli’s Theorem for such a case is warranted
and leads readily to the following relation (with n” as a datum
plane; b denoting the height of the water-barometer or about
34 ft.):

p" w"2 ’ ” Cwﬂz 4ﬂ’ w'2 w’lz ”
7+-2z-+h +h oy T d g2 +h"+b, . (3)
or

Pn 4V w? W,
’—=[b+-d_"2g_ 1- ¢)+ ]—h. e @

The value of ¢ may be taken as approximately 0.30 (see
§ 107). It is evident from eq. (4) that the value of the pres-
sure p, would be negative if the elevation »’ were numerically
greater than the quantity in the large bracket; that is, the
greatest permissible value of &’ would be, theoretically,

4ﬂ1 w2 w'? Wy,
W=bt=p gt —3 (1 0, - . . . (5

if flow with full sections is to be reallzed. But practically,
since water-vapor might form in the upper part of the tube
if the pressure were too low, especially in a warm climate, this
value of A’ should not be approached within (even) 5 or 6 feet.

If the diffuser were absent, that is, if no provision were
made to secure a gradual enlargement of waterway between
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Cw”2 w»ﬁ
n and 7/, the term TR or 0.30 2 would be replaced by
w,2
‘2‘9-.

\\‘ 8s. Turbines of the Mixed-flow Type, or ¢ Inward and Down-

ward.”—In turbines of this type the wheel-channels, while
receiving the water from guides on the outside, so that the
course of the water is at first radial and inward, toward the
shaft, gradually curve in such a way that at exit the water
has an absolute path nearly parallel to the axle. The axle
being usually vertical, the course of the water may be rudely
described as “‘inward and downward,” and the turbine is said
to be one of ‘“mixed flow.”

Most American turbines are of this class, a typical vertical
section (or, rather, a section through the axis of the shaft)
~WHEEL being shown diagrammatically in
1 @) Fig. 65, where the solid black shading
represents the revolving part, or
“runner.” The guides are placed
. in a ring surrounding the ‘runner”
Guipes .. B 7 as in the Francis turbine; but the

Fio. 65. water leaves the turbine mainly in a
direction parallel to the axle or shaft.

86. American Turbines. — A prominent and successful
American turbine is made by the-Risdon-Alcott Co., of Mount
Holly, N. J. Fig. 66 shows the ‘‘runner,” or turbine itself,
which has a curved upper crown; the place of a lower crown
being taken by a vertical cylindrical band (represented as
transparent in the engraving). In Fig. 67 is seen an outside
view of the wheel-case, etc. The guide-vanes, B, B, etc., are
fixed upon the ring R. S is the short discharge-tube, intended
to dip a few inches below the surface of the tail-water. The
gate is a vertical cylinder, seen at C, and in this make of tur-
bine is furnished with a number of horizontal extension pieces,
such as D, D, etc., accompanying the gate in its vertical move-
ment, and providing, therefore, a movable ‘‘roof” for each
guide-channel. The turbine vanes or blades are warped sur-
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faces, their lower extremities suggesting the form of a spoon,

or scoop. The turbine, generally of cast iron, though some-

times of bronzg, is cast in a solid piece. In Fig. 67, V is the

shaft of the turbine, while the smaller shaft W is intended

to operate the gate; whose motion up or down, as may be

needed, is brought about through the intervening gear-wheels

and rack by the turning of shaft W. A wheel of this design

made the highest record at the turbine tests conducted at

the Centennial Exposition held at Philadelphia in 1876; its
performance at part gate being remarkable for that date.

The ‘Risdon-Alcott Co. also manufacture a turbine pro-

vided with a ‘“register” gate; which consists of a cylindrical

shell placed between the guides and outer edge of wheel and

perforated with slots parallel to the shaft, somewhat like a grid-

iron. Fig. 67a shows such a gate.

Its motion 1is circumferential

instead of parallel to the shaft,

the slots and intervening solid

portions being of such dimensions,

in connection with guide-vanes of

considerable thickness, that while

in one position the passage of the

water is entirely obstructed, a

comparatively small angular mo-

tion will leave the guide-passages

fully open. The register-gate is

Fia. 67a. used with several turbines of

American make. :

Another prominent make of turbine in America is the

“Victor Turbine,” now (1905) manufactured by the Platt

Iron-works Co., of Dayton, Ohio. Fig. 68 gives a view of

the turbine itself, with its peculiar scooped-shaped vanes;

while in Fig. 69 is shown the outer wheel-case, and guides, of

one of these turbines, with its shaft directly connected to that

of an electric generator vertically above. The engraving also

shows the steel casing forming the lower terminus of the flume or

penstock conducting water to the turbine, which is a “33-inch



FI1G. 68. Victor Cylinder Gate Runner.
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F16, 69. Victor Turbine in Flume, Diiect-connected
to Generator,
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Cylinder-gate Victor Turbine.” In Fig. 70%* is shown the
“Victor High-pressure Runner” intended for heads of from
100 to 2000 ft. All of these wheels are cast in one piece, of
cast iron or bronze.

The ‘““New American Turbine ” manufactured (in 1905) by
the Dayton Globe Iron-works, of Dayton, Ohio, is a prominent
American motor of the ‘“inward and downward” type. The
““runner,” or turbine itself, is shown in Fig. 71.f{ Two kinds
of gate are used with this turbine: the cylinder-gate, as already
described in connection with other turbines, moving parallel
to the shaft; and the ‘““wicket-gate,” which consists in having
a movable leaf on one side of each guide-channel, this leaf
being pivoted at the extremity nearest the turbine and pro-
vided with a rounded shoulder at the other. By the swinging
of this leaf the waterway of each guide-channel is varied in
amount, and may be closed entirely.

Fig. 72, which gives a horizontal section made through
the upper part of a New American Turbine (as made in 1890)
and its guides, shows these movable blades or leaves, this
arrangement of regulation being somewhat similar to that
adopted in the Thomson Vortex Wheel (see § 80). In Fig. 73
is given a view of the wheel-case and shaft of a ‘“wicket-gate”
-New American Turbine, set in the floor of a wooden flume.
The small shaft on the right is for moving the guide-leaves,
each of which is connected by an outside link (visible in the
figure) with a horizontal disc. When the small shaft turns,
the disc also turns and moves all the guide-leaves simultaneously
and through the same extent of movement. As seen in the
figure the discharge-tube, or short ‘“draft-tube,” as it may be
called, has its lower edge somewhat below the surface of the
tail-water.

Other prominent American turbines of the ‘“mixed-flow”
type, like those just described, are the ‘“Hercules,” made by
the Holyoke Machine Co., of Holyoke, Mass.; the McCormick,
made by the S. Morgan Smith Co., at York, Pa.; and the
“‘Samson,” by the James Leffel Co., of Springfield, Ohio. This
last-named wheel is shown in Fig. 74, opp. p. 134, and is in

* See opposite p. 125. T See opposite p. 135.
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reality a_double wheel, the upper portions of the wheel-pas-
qutioned“oﬁ‘as shown. " These three wheels use
thecyTinder-gate, moving axially, i.e., parallel to the shaft.

The trade circulars of some of the makers of the fore-
going turbines refer to tests of their wheels made at Holyoke,
Mass., at the testing-flume of the Holyoke Water-power Co.
(see § 97), where the highest head available is 18 ft. Some of
the values of efficiency obtained in these tests not only greatly
exceed 80 per cent., but in some cases approach 90 or over.
Polishing and smoothing of the surface of the turbine-vanes
has been found to increase the efficiency in several instances.
In the case of several American turbines taken to Europe and
there re-tested, European methods being followed, somewhat
lower values of efficiency have resulted. It is thought that
the discrepancy is due to the differing modes of measuring
the water used.

. The Jonval type of turbine, or ‘“parallel-flow” variety, is
manufactured by R. D. Wood and Co. of Philadelphia, Pa.,
and is sometimes made “‘duplez’’; that is, the runner is pro-
vided with two concentric rings, each containing a set of vanes,
the guide-ring being double also. When the supply of water
is reduced, one ring alone is brought into action without sac-
rifice of efficiency.

As already mentioned, the firm of Kilburn, Lincoln and
Co., at Fall River, Mass., manufacture an outward-flow turbine
of the Fourneyron type. See § 75 and Figs. 17, 18, 19.

87. American Turbines. Historical. (See paper by Mr.
Samuel Webber in Transac. Am. Soc. M. E. for 1905, abstracted
in the Engineering News of Dec. 5, 1895; and also one by
Mr. A. C. Rice, published in the Engineering News of Sept. 18,
1902, p. 208.)—During most of the first half of the nineteenth
century the large mills of New England made use of the over-
shot and breast wheel for water-power; but in 1844 Mr. Uriah
A. Boyden built and installed a Fourneyron turbine of 75 H.P.
at Lowell, Mass., which on test yielded an efficiency of 78
per cent., a figure considerably greater than that furnished
by the old-fashioned wheels in the neighboring factories.



F1G6. 74. The Samson Runner.

FI1G 72. A type of Wicket Gate.
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FIG. 71. New American Runner.
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Several other turbines were then built, some of which were
tested by Mr. J. B. Francis, hydraulic engineer, and the success
of these motors stimulated imitation and invention in the
United States; and turbines of the inward-flow (Francis) and
parallel-flow (Jonval) types were constructed and put into
service in many mills. About 1860 and later, the Swain and
Leffel turbines were invented, combining the features of the
Francis and Jonval types by securing an ‘“‘inward and down-~
ward ”’ discharge of the water (mixed type). The dimensions
of the wheel-passages parallel to the shaft being made relatively
great, a given quantity of water could be used with a less
diameter of wheel; while the angular velocity (or revolutions
per minute) was greater for a given linear velocity of the outer
edge of wheel; that is, for a given head. These features con-
duced to cheapness of construction and speed in operation.
High efficiencies were also obtained with these turbines; those
at ‘“‘part gate” being a notable improvement on previous
results. The Leffel ‘wheel was provided with the ‘“wicket-
gate”’ device (as at present in the “‘Samson’’ and ‘“New Ameri-
can”). The Swain wheel had a form of gate which main-
tained a rounded aperture at all stages. :

To quote from Mr. Webber’s paper: ‘“The Swain wheel
had, however, given an excellent result as far back as 1862,
and from that date down to about 1878 the number of turbines
was legion, in all sorts of variations of curve of bucket and
form of gate, but all containing the same general features of
inward and downward discharge.” ‘“The general result of
this change from the Fourneyron type, as first introduced,
has been to furnish the public with turbines of equal power,
in one-half the space and at one-fifth the cost, being single
castings of iron or bronze instead of being built up of many
~ parts.”

In 1876 began the ‘“new departure” in the design of Amer-
ican turbines, inaugurated by the high efficiency at part
gate, and large capacity for its diameter, of a 24-in. “Her-
cules” wheel invented by Mr. John B. McCormick. The axial
dimensions of this wheel were, relatively, greater than ever
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before, and each bucket was provided with three sharp projecting
ridges to assist in the guidance of
the water at ‘“part gate.” (The
‘““Hercules” of that date isshown
in Fig. 72a.) Other makers soon
followed with improved designs of
their wheels, there being thus
produced the ‘“Victor,” *“ Risdon,”
and “New American”; all with
high efficiencies and large capac-
ity for a given diameter. Mr.
Webber gives a table showing the progressive increase in
capacity (for a given diameter) from the Boyden-Fourneyron
design, with which, in the case of a 36-in. wheel under 26 ft.
head, 22.95 cub. ft. of water was used per second, up to the
more recent ““Samson,” ¢ Hercules,” and * Victor” wheels, each
of 36 in. diameter and using 109 cub. ft. of water per second
under the same head, 26 ft., and with even greater efficiency.
The “ Hercule-Progrés,” made in France on an American type,
has the same general appearance as the ‘“ Hercules” shown in
Fig. 72a. (See Prasil’s Report on Turbines at the Paris Expo-
sition of 1900; Schweizerische Bauzeitung, vols. 36, 37.)

88. Choice of Hydraulic Motor for Different Heads.—A
valuable article by Mr.John Wolf Thu-so*on ‘‘ Modern Turbine
Practice and the Development of Water-powers” was published
in the Engineering News of Dec. 4, 1902, p. 46, and Jan. 8, 1903,
p. 26. The following recommendations are quoted from that
article:

“The type (of hydraulic motor) to be employed in each
individual case should be in accordance with the height of the
head to be utilized, as follows:

1. “Low heads, say up to 40 ft.: American type of turbine
(i.e., of the “inward and downward” variety) on horizontal
or vertical shaft, in open flume or case, nearly always with draft-
tube.

2. “Medium heads, say from 40 to 300 or 400 ft.: Ra-
dial inward-flow reaction or Francis turbine, with horizontal

* See also Mr. Thurso’s book mentioned in the ‘‘ Bibliography’’ on p. iv.




FI1G. 73. New American Turbine in Wood Flume.
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shaft and concentric or spiral cast-iron case with draft-
tube.

3. ““High heads, say above 300 or 400 ft.: Pelton wheel;
or radial outward-flow, segmental-feed, free-deviation turbine
(i.e., a Girard impulse wheel); or a combination of both, on
horizontal shaft and cast- or wrought-iron case; often with
draft-tube.”

89. General Theory of Reaction Turbines.—The theory of
the mixed-flow turbine will now be presented and finally
generalized so as to be applicable to any type of reaction tur-
bine. Fig. 75 represents a single passageway, 1...N, of a

Fic. 75.

mixed-flow turbine having its shaft, S, vertical. The entrance-
point, 1, is describing a horizontal circle A...1... M with
a velocity, vy, of proper value for best effect, the corresponding
velocity of the exit-point N being v, in horizontal circle
T...N...G, this circle being a vertical distance, ho, below
position 1, which is itself h, ft. below the surface of the head-
water. The wheel is supposed to be in an open flume or wheel-
Ppit, so that there is no loss of head in a penstock; in fact all
friction in guide-passages and wheel-channels will be disre-
garded, at first. There is no diffuser, so that the fluid pressure
of the water at the point of exit N is taken as p,=(b+h,)r,
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b being the height of the water-barometer and h, the vertical
distance of the point N below the surface of the tail-water.
(In case N is above the tail-water, h, is negative.) The.paral-
lelogram of velocities at entrance is in a horizontal plane, w,
being the absolute velocity of the water at that point making
an angle a with wheel-rim tangent, and ¢, the relative velocity
It will be assumed. as before, that the angle 3 is eventually to
have such a value that there will be no ‘“shock,” or impact,
at entrance. At the exit-point N the parallelogram of velocities
isin a vertical plane, the absolute velocity w, being the diagonal
formed on the relative velocity c,, as one side, and the wheel-
rim velocity v,, as the other side, of a parallelogram. Of
course the relative velocity ¢, follows the tangent to the walls
of the turbine passage at N and makes a (small) angle ¢ with
the wheel-rim tangent Nv,. The two radii are r, and r,, as
shown, r, being the radius of the mean position N, or point
half-way out radially along the discharging edge (shown better
in the next figure, Fig. 76). Let us denote by F' the aggregate
sectional area of the exit passages of the turbine, that of each
passage being taken at right angles to the relative velocity c,;
and by F, the aggregate sectional area of the guide-passages
at the entrance-point, 1. For example, in Fig. 76, if there
are m, turbine channels and m, guide-passages, then F,=
Mnanen and Fo=moaey sq. ft.

We now have the following relations (losses of head in
guide-passages and wheel-channels being neglected): '

From trigonometry,

c2=w2+v2-2ww cose, . . . . (1)
and W2=c2+v,.2—2cwc088. . . . . (2)

From Bernoulli’s Theorem applied to the steady flow of
the water between rigid stationary walls from head-water
surface to outlet of guides,

P1, w2 .
—4_—=b+h S (-
r 2 ' ®)

(p1 being the internal fluid pressure at point 1).
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From Bernoulli’s Theorem for a steady flow in a rigid pipe
rotating uniformly about a vertical axis (see eq. (13), § 41)
between entrance-point 1 and exit-point N of a turbine channel
(adding in the gravity head ho),

‘01
2g T34 v 4)

For a minimum residual klnetlc energy we may write, as
in previous investigations, the relative velocity c,=wheel-rim
velocity v, at exit, i.e., .
Chn=Un(se §53). . . . . . . (5
Equation of continuity: Fow, =F c,; B ()
The proportion: VUV . e e o (7)

14

+(b+h,.) 2 o P l+ho+

The volume of water used per second:
Q=Fo’w1, =F,.C,p e e e e e e (8)

Theoretic power of the wheel, in case there is no diffuser and
all fluid friction between head-water surface and point of
exit N (also axle-friction) be neglected is

L,=R’v’,=th—?]- -——; {ft.-lbs. per sec.}, . . (9)

R’ being the resistance, lbs. (overcome by the turbine in steady
running), tangent to the circumference of a pulley where the
linear velocity is v/ ft. per sec. (N.B. If by means of a dif-
fuser all loss of head between exit-point N and the surface of
the tail-water could be considered to be obviated, we should
have R'v =Qyh as in eq. (4), § 38.)

Now solve (3) for p;+r and substitute in (4), from which,
after inserting the value of ¢,2 from (1) and noting that
hy +ho—hn=h, the total head of the mill-site (that is, the ver-
tical distance from the surface of the head-water to that of
the tail-water, and also writing ¢, =v,[from (5)], we have

wwcosa=gh. . . . . . . (10)
Fncn Fncn ™ Vn
But from (6) and (7), W1 "'—F,—o—, =To; nd " =_7'_; Sub-

stituting which in (10), and solving, we have as the “best
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value” of the exit wheel-rim velocity for best effect when fluid
friction is disregarded (with the exception of that between
point N and surface of tail-water, there being no diffuser)

Fo rn gh
v,-V]ﬁ-—-—i— ¢ 5!

1 cosa’

This is now in such a form as to hold good for any reaction-
turbine, the subscripts 1 and n referring to entrance and exit,
respectively, of the turbine channels; and a fair allowance
for fluid friction in the guide-passages and turbine channels
may be made (as due to a study of numerous numerical examples
and actual tests) by deducting eight per cent. of this value
from itself; that is, by writing

F 0 Tn ([h

'Dn=0.92[ F;'r_l'cosa .

(12)

In the case of a parallel-flow, or “axial,” turbine, r =7,
(=r), being measured to the middle point of the radial dimen-
sion of the ring containing the wheel-vanes; see Fig. 62.

90. Turbines. General Theory with Friction.— If in the
Low,?

2

analysis of the last paragraph we introduce a loss of head
between head-water and entrance-point 1, and a loss of head

2
C";ig in the turbine channels themselves, with ¢, =1, as before,

for best effect, the outcome is found to be

1 Fora gh
Un= &o F, r, &n For, Fn'rl'cosa'

1+3 "Fory cosa ' 2 F.ricosa

(13)

For ordinary values of the ratios of the radii and sectional
areas concerned, and with ¢ and ¢, each equal to about 0.10,
as mentioned in § 71, the value of the first radical in eq. (13)
above would be found to be not far from the 0.92 of eq. (12).

It is to be noted that the relation w;v; cos @ =gh, in eq. (10),
may also be derived in a much more direct manner by the
analysis already given in § 67, which applies to any turbine
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whatever since the parallelograms of velocities at entrance and
exit may lie in any position relatively to the shaft of the tur-
bine without vitiating any of the steps taken in the analysis
of that paragraph. See § 68.

Another point to be noted is that egs. (1), (2), (5), (6), (7),
and (8) apply even when fluid friction in guides and channels
is considered, and will therefore be used in subsequent opera-~
tions where it is desired to take account of that friction.

oI. Sectional Areas Fo and F,. Thickness and Number of
Guide-blades and Turbine-vanes.—Let us consider the sectional
area of the cross-section of a guide-passage at point 1 to be
rectangular. It is perpendicular to the absolute velocity w;,
has a width a (=md, in Fig. 47), and a length ¢,. See Fig.
76, in which is also shown the rectangular section of a
turbine channel at exit; likewise considered rectangular, with
width a, and length e,; SS is the shaft of turbine. Now
let so denote the “ pitch” of a guide-blade; that is, the length
of that portion of the circumference, of radius r;, which corre-
sponds to one guide; also let my be the number of guides (so
that meso=27r;) and {¢, the thickness of the guide-blade.
Similarly, at the exit-point, N, of a turbine channel, let s, be
the pitch of a turbine-vane, m, the number of vanes, and t,
the thickness of a vane. Then a=sqsina—t, (very nearly),
and therefore, since Fo=mopaeo, we have :

Fo=eo(moso sin @ —moto) =eg(27ry sin @ —mqlo); . (14)

and similarly
F,=e¢,2nr,sin 0—mut,). . . . . (15)

For approximate purposes, however, we may write the ratio

Fy e sina r
E=e—”ma e« e e e (16)
The above is readily understood for radial turbines. As for
parallel-flow wheels (or “azial wheels ”’) we write r,=r, (call
it now r) and measure it to a point half-way between the inner
and outer rings between which the turbine-vanes are placed.
The pitch of the guides and vanes is measured along this inter-
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mediate circle of radius r, and the dimensions eq and e,, are radial
(and horizontal, if the shaft is vertical; see Figs. 62 and 64).
In a mixed-flow turbine (see Fig. 76), the entrance rectangle
(that is, for a guide-exit), of area=ae,, is vertical (provided the
d; shaft of turbine is verti-
e cal), while at the turbine-
| S exit, N, the right section
> between vanes has two
| horizontal edges of length
l =e, and an area=ane,;
' where r, is the radius of
i the point on edge of
Il ___ wheel-vaneat N, half-way
i S (say) between the ex-
[)

Y ; ;
% n treme points of that hori-
Fia. 76.

zontal edge. e, is hori-
zontal and may be greater than e, if desired. (Of course, in
the case of turbine-vanes which have scoop-shaped forms st
the exit-point N, the dimensions of this equivalent rectangle,
of sides e, and a,, are difficult to estimate.)

92. Empirical Relations for Turbine Design.—In the design
of a particular turbine which is to work under a given head and
utilize a given quantity, @, of water per second, there are
many dimensions and quantities which have to be determined
and finally so adjusted to each other as to produce the best
results. Theory cannot determine all these quantities. If the
guide-blades and wheel-vanes are too numerous, a dispropor-
tionate amount of rubbing surface is offered to the water,
with consequent loss of power from fluid friction; whereas if
they are too few, the water is not so well guided and leaves the
wheel with too great absolute velocity. Durability and ease
of construction are also to be regarded. Experience and ex-
periment, therefore, must be relied upon to a large extent as
governing certain elements of design. In America the evolu-
tion of the “inward and downward "’ turbine has been very
largely a matter of ““‘cut and try’’; but very good results have
finally been attained for moderate heads (up to about 40 ft.).
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In Europe, however, it is more generally the custom to design
each proposed turbine for its special site and work.

In the present book space cannot be given to special details
of design and construction. For these the reader is referred
to the works of Bodmer and Thurso, in English; and to those
of Meissner, Mueller, Herrmann, and Zeuner, in German.

. It will suffice to give a few empirical relations and assump-
tions condensed mainly from Bodmer and Mueller.

If we distinguish the following three cases, viz.:

Case I. When Q+w; is >16 sq. ft. (large Q and small &);

Case II. When Q-+w; is >2 and <16 sq. ft. (medium Q
and h);

Case III. When Q-+w, is <2 sq. ft. (small Q@ and high h);
then the angle @ may be assumed from 20° to 25° for (I); 15°
to 20° for (IT); and 15° to 17° for (III); for axial turbines.

Angle 0 for the three cases, for azial turbines:

20° to 25°, 15°to 17°, and 12° to 16°, respectively.

For radial inward-flow and mized-flow turbines take a from
10° to 24°; also & from 16° to 24°.

For radial outward-flow turbines assume a from 15° to 24°,
and ¢ from 10° to 20°.

The ratio 11:-,—0 for axial turbines may be taken as 0.5 to 1.5,

usually =1.0.

For radial inward-flow and for mized-flow wheels take r, from
0.75V Fy to 1.75V Fy; with 7,=0.65 to 0.85 of ry.

For radial outward-flow turbines assume r, from 1.50V F,
to 2.0V Fy; with r,=1.25r, to 1.50r,.

For azial wheels, referring again to the above three cases, I,
11, and III, the radius r may be taken from v/ F, to 1.25v F,
for Case I; 1.25VF, to 1.5V Fo for II; and 1.5V Fy to 2v F,
for III; also, as to the pitch, take so=10 to 12 inches for
Case I; from r+3.75 to r+4.5 for II; and 4.5 to 6.0 inches
for III.

For radial inward-flow and for mized-flow turbines the pitch
may be taken from 4.5 to 12 inches; and for radial outward-
flow wheels, from r+4.5 to r+6.
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As regards the value of e, with axial wheels, Mr. Bodmer
recommends a value of from 7+1.25 to »+2 in Case I (above);
from r+2 to r+2.5 for Case II; and from r+2.5 to r+3 in
Case III. Also, for the axial depth of wheel in the case of an
axial turbine, from r=+5 to r+3.

The number of turbine-vanes, viz., m, (=2rr,+s,), should
be greater by 1 or 2 than the number, mg, of guide-blades.
The thickness of both guide-blades and turbine-vanes should
be taken at from } to § inch for cast iron, and from  to  inch
for wrought iron or steel; these dimensions for parts near the
ends, which should be beveled or sharpened off if possible.
(It may sometimes be advantageous to make the wheel vanes
much thicker ‘n their m'ddles to give better form to the
passageways between them: see Fig. 55.)

93. Computations for a Proposed Turbine. Order of Pro-
cedure.—It is supposed that the rate at which water may be
used in steady flow, viz., @ cub. ft. per second, is given and also
the head h of the mill-site, and that a turbine of some special
type is to be designed for the given site and duty. We should
first assume values for the two ratios Fo+ F, and r,+7;, and
for the angle a. These assumptions may need to be revised,
however, after a certain progress has been made with the
computations. For example, with a radial turbine, to have
the crown-plates parallel implies equal values for ¢, and e,, in
which case the assumption of the three values, Fo+ F,, r,+7,
and a would determine a value for the angle &; which value
might not be suitable, thus requiring a change in some of the
original assumptions. In such a case, therefore, (radial turbine
with parallel crowns,) it would be better to assume the three
valuesa, 8, and r,+r,; from which the ratio Fo+ F, could then
be computed (at least approximately) from eq. (16) of § 91.

With these three values, then, viz., for Fo=+F,, r,+7,
and a,—h being already given,—we find the best speed for the
exit wheel-rim, v,, from eq. (12, § 89, viz.,

Forn gh S
092[ F.'r cosa oL (12)
(in deriving which fluid friction has been taken into account).
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With v, known we now apply the relations v,=¢, for best
effect and F,cn=Fow; (both of which hold even when friction
is considered), and solve for w;, the absolute velocity at entrance.

We are now in a position to determine the quotient Q-+ w;,
upon which the choice of angles & and ¢ partly depends for
axial turbines. If necessary, a new choice may now e made
and the computation revised.

With w; and v, known [since vy = (71 +75)v,), the parallelo-
gram of velocities at the point of entrance of the turbine channel
can be solved, trigonometrically or graphically, and thus the
value of the angle 8 becomes known, upon which depends the
position of the relative velocity ¢; and of the tangent to wheel-
vane at this entrance-point (see Figs. 48, 58, and 62). The
tangent to the wheel-vane at 1 must have this position in
order that, at the speed of wheel just previously found (v,),
there may, at no ‘“shock” or impact at point 1. In Mueller's
recent work* the statement is made that recent practice in
designing Francis turbines favors the relations w;=%gh and
B =about 90°.

From the now known value of Fy, =Q +w;, we pass on to
the computation of the value of the radius r; from the empirical
rules of § 92; from which follows that of r,, since the ratio of
the radii was assumed at the outset. The pitch of the guide-
blades is then fixed upon from the rules given in the preceding
paragraph and the number of guid:-blades computed, i.e.,
mo. The value of ¢ is now found from

Fo= 0[27”'1 sin & —‘mOto]eo, e e e (17)
in which, according to Mr. Bodmer, the value of C is to be
taken as 1.0 for axial wheels, and as 0.91 for radial and mixed-

flow wheels.

. 04. Excess Pressure at Entrance.—In German treatises on
turbines some stress is laid on the desirability of adopting
finally such dimensions and angles that the fluid pressure at
point 1 (entrance) shall not greatly exceed that in the tail-

* “Dhe Francis-Turbinen und die Entwicklung des Modernen Turbinen-
baues;” by W. Mueller. Hannover, 1901,

10
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water or draft-tube on the other side of the joint or crevice
fo med between the edges of the turbine crowns and the oppo-
site, adjoining, stationary edges of the guide floor, or gate.
If the difference is great, the leakage through the crevice may
be of importance.. The amount of the (unit) pressure, p,,
may be found from eq. (3), § 89, after w; has been determined.

04a. Numerical Example. Jonval Turbine. Fig. 62.—Com-
pute proper values for the arrangement of a parallel-flow tur-
bine (Jonval) which is to work under a head of A=13.5 ft.
and to use Q=210 cub. ft. per sec. of water.

Here let us assume the angles @ and ¢ to be 20° and 15°
respectively, and that ey=e, (nearly; for present purposes, in
order to compute the ratio Fo+F,). Since rj=ry, =, the

F,
ratio r, -+ is unity; therefore, from eq. (16), § 91, Fo :;Ec;
0.342
0.259 = 1.32; and, from eq. (12),

32.2x13.5
1),.=0.92J1.32 X1 X—W =22.72 ft. per sec.

Fncn F,,‘l)n 22.72

Next, wi="p=="p, =132
To find the angle 3 of Fig. 62, note that in Fig. 77, showing
the parallelogram of velocities at entrance, if the perpen-

=17.2 ft. per sec.

F16. 77,

dicular FE be » dropped from F upon 1..D, we have DE, or
1..B, =D1- El;ie., DE=v,—w; cos a. Also, FE =w; sin a.
Now the ratio FE E DE=tan @, 8 being the supplement of the
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desired angle 8; hence (remembering that v, =v, for this type
.of wheel) we have

_w sin « _ 17.2%x0.342
tan B = cosa 22.72—17.2 X0.940 0.954.
Q 210

Therefore §/ =43°40' and f=136°20".  Fo=7" =75 =12.28q.ft.

and hence, assuming r=1.25VF, (see §92), r=1.25V122=
4.36 ft.; ie., the mean diameter of the turbine should be
2r=8.72 ft. Adopting 36 as the number of guide-blades and
38 wheel-vanes, with the thickness fp=t,=0.5 in. near ex-
tremities, we have for the length of opening of a wheel-channel
at entrance [radial in position; see Fig. 62, and eq. (17), § 93]

~ Fo B 12.2
€0~ onr sina—moly 27 X 4.36 X 0.342— 36 X #¢

=12.2+7.86=1.55 ft., =1 ft. 6.6 in.

If the thickness of blades and vanes were zero, ¢ and ‘e, would
be equal, since the ratio Fo+F, has been taken equal to
sin @ +sin 8. But, taking into account the thickness (0.5 in.),
we find for e,, from eq. (15), § 91,
_ F._ 12.2+1.32
€n = 277 Sin 0— Mnly 27 X 4.36(0.259) — 38 X 7’

=1.63 ft.; which is so little different from eo that the work
of determining the best speed v, (which assumed ey=e,) need
not be recast. (Or, the thickness of vanes, t,, at exit, might be
made a little smaller than that, fo, of guides near entrance of
wheel, in the proportion of sin & to sin @. In that case e,
would be more nearly equal to €.)
The final dimensions of the turbine, then, are:
Outer diameter = 2r +¢y=10.27 ft.
Inner diameter=2r—ey= 7.17 ft.
The depth of the wheel (=ED in Fig. 62) may be taken
as r= 5; that is, as 0.87 ft.
The probable efficiency to be expected is some 80 per cent.
or over (full gate), this being about the figure reached (83 per
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cent.) in the test of a turbine, closely reseml’ing that of the
present example, at Goeggingen, Germany (see Bodmer’s Hy-
draulic Motors, p. 365), at its best speed of 45.5 revs. per min.
(and full gate).

In the present example, from the value of the best linear
speed, v,=22.72 ft. per second, of the extremity of the mean
radius, we compute the angular speed as follows, if n denote the
revs. per unit time:

2rr)n=v,; .. n=v,+27r; or,

n=22.72+ (27 X 4.36) =0.83 revs. per sec., =49.8 revs. per min;



CHAPTER VI.
TesTING AND REGULATION OF TURBINES.

95. The Prony Friction-brake.—In case a turbine 1s used
to run an electric generator on the same shaft, its power at
different speeds may be tested by electrical measurements
applied to the electric current produced; but ordinarily, if
the turbine is not too large, use is made of a Prony friction-
brake (see p. 158, M. of E.) applied to the rim of a pulley secured
on the shaft of the motor. By the tightening of the brake
more or less friction is produced on the pulley-rim, and the
value of this friction becomes known by the weights necessary
to hold the brake in equilibrium; that is, to prevent the brake
from being turned by the pulley which moves within it. If
the pulley has a horizontal axle, the weights are suspended
from the extremity of a lever projecting from the brake and
forming a rigid part thereof; but in case the shaft of the pulley
is vertical, the rod, or scale-pan, on which the weights are
suspended is connected with the rim of the brake by a bell-
crank lever.

The friction thus provided, and measured, becomes for the
time being the o :ly resistance R’ (Ibs.) besides the axle friction
of the shaft itself The linear velocity, v’, of the rim of the
pulley becomes known from a measurement of the rate of rota-
tion (revs. per minute) and the radius of the pulley-rim. In
any one experiment, then, the power R’v’ (ft.-lbs. per second)
is the power developed by the turbine over and above that
(R"v"") spent on axle friction. If the brake is tightened suffi-

ciently, all motion on the part of the turbine may be prevented
149
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and the power is zero, since v’ is zero.
On the other hand, if no resistance of
friction or otherwise (except axle friction)
is provided at the pulley-rim or else-
where, then, although a high rate of
rotation may be maintained by the tur-
bine when thus run ‘‘unloaded.”” the use-
ful power developed is again zero; since
R’ is zero. Roughly speaking, it may
be said that the speed of steady motion
assumed by a turbine when thus run
“unloaded ” is about double that to
which it adjusts itself in steady motion
when a resistance R’ is applied of such
value that the product R'v/, or useful
power, is a maximum.

96. The Hook Gauge.—A useful in-
strument employed for the determination
of the position, or change of position, of
the horizontal surface of a body of still
water, is the ‘“ hook gauge.” 1If a vertical
s rod of metal have its

M lower end turned up-

ward in the form of
a hook, with a fine
sharp point, as in
Fig. 78, the point of
N the hook can be ad-
justed to the level of
the water surface with
great precision. The
instant when, in its
upward motion, the
== point of the hook is

—— ———— == just about to break
—— —— —— - through the surface
Fo.78. _ can be noted with
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great exactness by the eye of the observer, if the water is
quiet; and the upward motion of the stem MN may then
be arrested. Fig. 79 shows such a hook, H, attached to a
graduated rod (like a leveling-rod) supported between two
fixed vertical guides carrying a vernier reading to thousandths
of a foot. A nut, N, is attached to, and projects from, the rod;
and both nut and rod are caused to travel vertically when the
milled head 4, and with it the screw @, is turned. If the
vertical distance of the zero of the vernier above the sill of a
weir (for instance) is known, and also that of the zero of the
scale above the point of the hook, the vertical height of the
point of hook above the sill of weir at any time is easily com-
puted from the observed reading of the vernier on the scale.
The instrument in Fig. 79 is one of those used by Mr. James
Emerson in connection with his work of turbine-testing when
in charge of the testing-flume at Holyoke (to be described in the
next paragraph). The engraving in Fig. 79 is reproduced from
Mr. Emerson’s book ‘‘Hydrodynamics’ (1881), which gives
records of his numerous tests, with related matter.

97. The Holyoke Testing-flume.—At Holyoke, Mass., where
the Connecticut River furnishes a large water-power, falling
some 60 feet, the Holyoke Water-power Co. controls the water
rights and leases power to the many mill-operators of that
city. The mill-owners pay a certain price per annum per
“mill-power,” which in that locality is the right to use 38 cub.
ft. of water per second under a head of 20 ft., either for con-
tinnous use (a 24-hour day) or for a definite fraction of each
day.

The fall of 60 ft. in the river is divided into three parts or
steps, two intermediate canals having been constructed at
proper levels, in such a way that the tail-water for the highest,
or next highest, series of mills forms the head-water of the
next lower series; while the water from the third, and lowest,
series is discharged into the lower river. In order that the
rate at which any mill turbine uses water at any stage or posi-
tion of its gate or regulating apparatus may become known
by simply observing the position of the gate, each turbine,



F1G. 81.
152



§ 97. TURBINE TESTING. 153

before being installed in the mill where it is to work, is tested
at the ‘“testing-flume” of the company and thus becomes a
water - meter; whose indications, when the motor is in final
place, are noted from day to day by an inspector of the com-
pany. In the same test its power, best speed, and efficiency
are also determined.

The testing-flume occupies the lower part of a substantial
building, and its main features are shown in vertical section in
Fig. 80. The walls of the wheel-pit DD, which is 20 ft. square,
are built of stone masonry and lined with brick laid in cement.
The water is admitted to it from the head canal through a
trunk, or penstock, and vestibule, which are not shown in
the figurc. Over an opening in the floor of the wheel-pit the
wheel to be tested, W, is set in place, the water discharged
from it finding its way through a large opening into the tail-
race C, 35 ft. long and 20 ft. wide, and finally over a sharp-
crested weir, at A, into the lower canal. The whole head h
available for testing may be from 4 to 18 ft. for the smaller
wheels, and from 11 to 14 ft. for large wheels, up to 300 H.P.
The measuring capacity of the weir, which may be used to its
full length, 20 ft. (and then would have no end-contractions),
is about 230 cub. ft. per second. The head h becomes known
in any test by observations on the water level in two glass
- tubes communicating with the respective bodies of water TV
and C. The water in channel C, which is a‘‘ channel of approach”
for the weir A, communicates (at a point some distance back
of the weir) by a lateral pipe with the interior of a vessel open
to the air, in a side chamber. Water rises in "his vessel and
finally remains stationary at the same level as that of the
surface n the channel of approach. A hook gauge being used in
connection with this vessel, observations and readings are taken
from which the value of hs, or ‘ head on the weir,” may be com-
puted; for use in the proper weir formula for the discharge, Q.

Fig. 80 shows a turbine, in position for testing, with a ver-
tical shaft—the more ordinary case. Upon the upper end of
the shaft is secu-ed a cast-iron pulley, P, to the rim of which
the Prony brake is fitted for purposes of test.
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98. The Prony Brake and its Use.—The style of Prony fric-
tion-brake used by Mr. Emerson in 1880, and for some twenty
years afterwards by his successors, at the Holyoke Testing-flume
is shown in Fig. 81. Upon the rim of the cast-iron pulley, B,
keyed upon the shaft of the turbine is fitted the hollow brass
band A (shown also in section at A), the friction of which upon

“the pulley can be varied by the tightening or loosening of. the
screw at M, this screw being turne by a hand-wheel N. Both
the rim of the pulley and the friction band are hollow, water
being circulated through them by the use of the flexible hose
G and R. The pulley revolves clockwise, as seen from above,
and the brake in its tendency to revolve wi h the pulley exerts
a horizontal pull toward the left (through the projecting arm
shown) upon the upper end P of the vertical arm of the bell-
crank lever PFH (fulecrum at F). A sufficient weight hung
at C holds the bell-crank in equilibrium and a pointer playing
along a scale at E indicates when the lever is in its median
position. At D is attached to the lever a vertical rod carrying
at its lower end a piston fitting loosely in a fixed vertical cylin-
der containing oil or water. This is called a ‘““dash-pot,” its
object being to prevent sudden motions of the lever, since while
the resistance of the oil to the motion of the piston is prac-
tically nothing for a slow motion, it is very great for a sudden
movement. In this way oscillations are controlled. At Vis
a counter from which the number of revolutions made by the
wheel in a given time becomes known.

The procedure of testing was about as follows: The brake
being carefully balanced and adjusted beforehand, a light
weight was placed on the scale-pan, and the wheel started at
full gate; sufficient friction was then produced to balance the
weight, and the speed of wheel noted. “The load was then
increased at intervals of two or three minutes, by 25 lbs. at a
time, until the speed of the wheel had fallen below that of
maximum efficiency for the head; the weights were then re-
duced again and the velocity of the wheel allowed to increase
until the maximum was again passed. The same process was
then repeated within a smaller range of speed and with smaller
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variations of load, until the speed of best work had been more
exactly ascertained, and the performance of the turbine at
* maximum efficiency, under full head and at full gate, had been
very precisely determined. This was repeated at eachof the
part gates, usually down to one half maximum discharge.” *

A letter from Mr. A. F. Sickman, present engineer in charge
(1905) of the Holyoke Testing-flume, states that up to April 11,
1905, 1542 wheels have been tested in the flume; and adds:
““We use the Emerson brass brake but seldom now, having a
full set of Prony brakes—home-made, cast-iron pulleys with
wooden jackets, giving very satisfactory work.”

99. Test of the Tremont Turbine.—The test of the  Tremont
Turbine,” a 160-H.P. turbine of the radial outward-flow type
(Fourneyron) made at Lowell, Mass., in 1855 by Mr. J. B.
Francis, was an event of special interest in the history of hydraulic
science and has become classic. Though the test is by no means
recent, it was carried out so thoroughly as to make its details
highly instructive to the student of hydraulics. The main
features of this test will now be presented and commented on.t

The inner and outer radii of the turbine, whose shaft was
vertical and whose general arrangement was like that of Fig. 45,
were 3.37 and 4.14 ft. respectively; height between crowns,
0.937 ft. at entrance and 0.931 at exit. There were 33 guide-
blades and 44 turbine-vanes. As to angles, a=28° B=90°,
0=22° (see Figs. 45, 47, and 48). The areas Fy and F, were
6.54 and 7.69 sq. ft., respectively; and the head, h, on the
wheel about 13 ft. (see details, later). The gate was a thin
cylinder, movable vertically, between the guides and the wheel.
There were no horizontal partitions dividing up the wheel-
channels; in fact, no special device for preventing the loss of
head usually arising at part gate with this kind of regulating
apparatus.

* Quoted from Prof. Thurston’s paper on the ‘‘Systematic Testing of
Turbine Water-wheels in the U. S.,” in the Transac. Am. Soc. Mech. Engrs.,
for 1887.

t Full particulars may be found in Mr. Francis’ book, ‘Lowell Hydraulic
Experiments,” New York, 1880.
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TEST OF THE TREMONT TURBINE.

(SELECTED EXPERIMENTS.)

2 3 4 i 5 6 7

" i be fR,l?),s 7 HP

. . It. t.-1bs. . P,
feet. p?l'v:ec. ]‘;gr Se(t;. pel' secC. eﬁic'

FULL GATE.

1] 12.8 | 0.00 | 135.6 0 0.00
211295 | 045 | 133.4 | 73160 | .68
311297 | 053 | 133.7 | 78490 | .72
4] 12.97 | 0.60 | 134.8 | 82110 | .75
5| 12,04 | 0.64 | 135.1 | 83960 | .77

6 | 12.90 | 0.85 | 138.2 | 88210 | .794| 160.3
7 1 12.90 | 0.88 | 139.0 | 88190 | .788
8| 12,90 | 0.90 | 139.6 | 83076 | .784
9 | 12.85 | 1.00 | 141.9 | 86,310 | .75
12.85 | 1.06 | 142.5 | 83970 | .73
12,90 | 1.18 | 144.8 | 77150 | .67
12.70 | 1.31 | 147.3 | 66.840 | .57
12.65 | 1.46 | 152.3 | 51680 | .43
12,55 | 1.60 | 156.6 | 33.350 | .27
1254 | 1.79 | 162.3 0 0.00

PART GATE.

13.51 | 0.00 | 60.3 0 0.00
13.55 | 0.46 | 67.8 | 24,460 | .43

1348 | 0.67 | 71.8 | 2798 | .46 | 50.9
13.39 | 0.96 | 76.6 | 21250 | .33
13.34 | 1.25 | 80.4 0 | ©0.00
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A large and strong friction brake was used for the test,
with arcs of wood rubbing on the cast-iron pulley which was
keyed to the turbine shaft, and was arranged with a bell-crank
lever as in Fig. 81, and also a ‘“dash-pot.” The various lever-
arms concerned were of such values that, with G denoting the
necessary weight at C for the equilibrium of the brake in any
experiment, the corresponding value of the friction at the rim
of the pulley was R’'=3.938G lbs.

The rate of flow, or discharge, Q@ cub. ft. per second, was
measured by two weirs at the end of the tail-race, somewhat
as in Fig. 80, use being made of the ‘“Francis Formula ” for
weirs (see p. 687, M. of E.); while the useful power, R'v’ (ft.-lbs.
per second spent on friction at rim of pulley), was computed
from the relation

R'vY =(3.938G) (2= 2.75n"), ft.-lbs. per sec., . . (1)
in which G is the weight on scale-pan in lbs. and n’ the number
of revs. per second of the turbine in any experiment (steady
operation). The radiu: of the friction-pulley was 2.75 ft.

The annexed table gives the principal data and results of
Mr. Francis’s test of the Tremont Turbine, arranged in the
order of the speed of wheel. In Experiments Nos. 1 to 15
(see column 1) the cylindrical gate was fully open (‘full gate ”’),
while in experiments 16 to 20 it was in a single fixed position
leaving open, at the wheel-entrance, about one quarter of the
vertical height between crowns; in other words, the gate was
drawn up about one quarter of its full range of height. In this
special ‘‘ part-gate ”’ position, however, the quantity of water
passing per second was much greater than one quarter of that
passing at ‘‘full gate”; as is seen from the values of @ in
column 4. For example, in Exper. 18, in which (for this posi-
tion of the gate) the efficiency was a maximum, the value of
Q is about one half of the @ used in Exper. 6 which gives the
maximum efficiency at full gate. It would be said, therefore,
that in Exper. 18 the wheel was working at about ‘‘ half gate.”
The heading of each column of the table shows clearly the
nature of the quantity given in that column and the units of
measurement involved in its numerical value.
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The computations relating to a typical experiment will now
be given, Exper. No. 6 being selected. In this experiment the
weight placed on the scale-pan was 1524 lbs. Hence, when
the brake was tightened sufficiently so that the wheel raised
the weight and held it balanced, the friction was R’=3.938 X
1524=6001 lbs. The speed of the wheel having adjusted
itself in this experiment to a rate of n’=0.851 revs. per second,
the linear velocity of pulley-rim (its radius being 2.75 ft.) was
v =2nrn/, =2r 2.75X0.851, =14.70 ft. per sec. Hence the
useful work done per second was R’v'=6001X14.70=88,214
ft.-1bs. per sec.

As to the value of @, the combined length of the two sharp-
edged weirs in vertical “thin plate ” was b=16.98 ft., the
number of end-contractions was n=4 (two weirs), and the head
on the weir hy=1.87 ft. (velocity of approach negligible).
Hence, from the formula

Q=3.33(b—0.1nh2)h2‘}, cub. ft. persec., . . (2

which is the same as eq. (14) of p. 687, M. of E., when 32.2
is put for g (that is, for the foot and second as units), we have

@=3.33[16.98—0.1 X4 X1.87]X (1.87)13 =138.2 cub. ft. per sec.

The difference of elevation of head- and tail-waters was
12.90 ft., so that Qrh was 138.2X62.5X12.90, =111,400 ft.-lbs.
per second; and consequently the efficiency, 5, = (R'v') + (Qrh),
=0.794; or 79.4 per cent.

100. Discussion of the Test of Tremont Turbine.—See table
on p. 156.) In the experiments with full gate, Nos. 1 to 14
inclusive, on account of the progressive lessening of the weight
G in the scale-pan (the brake friction being regulated each
time to correspond) the uniform speed to which the wheel
adjusts itself in successive experiments increases progressively
from the zero value, or state of rest, of Exper. 1, when the
friction was so great as to prevent any motion, up to a maxi-
mum rate of 1.79 revs. per sec., attained when no brake fric-
tion whatever (“‘no load”) was present. In this last experi-
ment, there being no useful work done, all the energy of the
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mill-site is wasted, partly in axle friction, but chiefly in fluid
friction (eddying and foaming of the water; finally, heat)
both in the wheel-passages and also in the tail-race, where the
water which has left the wheel with high velocity soon has its
velocity extinguished. The same statement is true, also, for
Exper. No. 1, except that axle friction is wanting. In both
experiments the efficiency is, of course, zero.

The quantity of water discharged per second, Q, is seen to
increase slowly (after Exper. 2) from 133.4 to 162.3 cub. ft.
per sec., though not differing from the average by more than
ten per cent. This may be accounted for in a rude way as an
effect of ‘“centrifugal action” (as in a centrifugal pump),
since the Tremont turbine is an outward-flow wheel. The
reverse is found to be true for inward-flow turbines, notably
the Thomson vortex wheel (see § 90), which is therefore to some
extent self-regulating in the matter of speed; since a less dis-
charge at a speed higher than the normal diminishes the power
and hence the tendency to further increase of speed.

In the succession of experiments Nos. 1 to 15 (all at full
gate and under practically the same head h) the efficiency is
seen to have a zero value both at beginning and end of this
series, and to reach its maximum at about the 6th experiment,
in which the speed is noted as being about one half that at
which the turbine runs when entirely ‘‘unloaded "’ (Exper. 15).
This is roughly true in nearly all turbine tests, but a notable
feature of considerable practical advantage is that a fairly
wide deviation from the best speed affects the efficiency but
slightly. For instance, a variation of speed by 25 per cent.
either way from the best value (of 0.85 revs. per sec.) causes
a diminution in the efficiency of only about four per cent.

It should be remembered, also, in this connection, that since
the water used per sec. (i.e., @) is somewhat different at differ-
ent speeds (at full gate), the speed of maximum power differs
slightly from that of maximum effic ency.

In the five “part-gate”’ experiments, Nos. 16 to 20, the
gate remains fixed in a definite position (about one quarter
~ raised; although the discharge is about one half that of full
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gate) through all these five runs. The head is practically con-
stant. As first the wheel is prevented from turning. The
power and efficiency are then, of course, zero; but @=60.3
cub. ft. per sec. As the turbine is permitted to revolve under
progressively diminishing friction (R’), the speed of steady
motion becomes greater, reaching its maximum (1.25 revs. per
sec.) when the wheel runs ‘“unloaded,” in Exper. 20; but the
power, or product, R'v/, reaches a maximum and then diminishes.
The same is true of the efficiency, whose maximum (in Exper.
18) is seen to be about 46 per cent., only. This forms a strik-
ing instance of the disadvantage and wastefulness of a cylindrical
gate, unaccompanied by other mitigating features, when in
use at part gate. This defect, however, may be largely reme-
died by the use of horizontal partitions in the wheel-channels,
as in Fig. 46, or by employing curved upper crowns, as in the
American “inward and downward ”’ turbines.

101. Tremont Turbine Test. Graphic Representation.—
Taking the angular speed revs. per sec. as an abscissa, and the
efficiency as an ordinate, points on paper may be plotted and
the curve thus formed called an ‘“efficiency curve,” showing
the variation of the efficiency with the speed of the turbine.
Such a curve is shown as OAaB in Fig. 82, having been plotted
from the fifteen full-gate experiments of the table on p..156.
The point of maximum efficiency occurs at @, and the scale of
efficiency is marked on the vertical axis at the left. Similarly,
if the values of @ are used as ordinates, with the speeds as
abscisse, the curve CE results, showing very plainly the gradual
increase of @, with the speed, after the second and third ex-
periments. The scale for Q is given along the right-hand edge
of the diagram. Similarly, the smaller curves GF and NM
show the variation with speed of the efficiency and discharge,
respectively, for the five part-gate experiments. In all the
curves the point corresponding to each experiment is shown
by a small circle.

(Details of many other tests may be found in Mr. Bodmer’s
book, in Mr. Emerson’s Hydrodynamics, and in technical
journals.)



3uIqIMJ, JNOWIL], 3} JO €181, ‘7§ OII
8l 9’l 14 N.— o'l 8’0 90 v'0 2o 0o

0 — -
' puod2s aad ‘saay |
02 |-—\---}--4--1 . . B | -
" m
Ob |- A A S
%, 4
019 o H
09 .o.m. VV—.A ! .G /ulun ............... > OE°
c 2 ! !
NHEANINEECINE
AEEANEEERER o
T . : s : m
g N " " 5
ozl (2 m. - In”rlohvuvi&- L .M. - =<
BTN
Obl [-- == - == ===~ {- Dxwro—002"
 quve T _d—eo
e R Y

161

II



162 HYDRAULIC MOTORS. § 102

102. Regulating ‘¢ Gates ”” of a Turbine.—When a variable
power is demanded of a turbine, as when in a factory the num-
ber of machines operated is not constant, or when the amount
of electric current generated in a dynamo run by the turbine
is required to be variable to suit the varying demands of street-
railway work or electric lighting, the average position of the
turbine gate is not that of “full gate.” Since the speed of the
turbine should be fairly constant, especially for electric work
(and this has to do with the question of governors treated in
§ 103), the required variation in power must be provided by
varying the amount of water used per second, i.e., @; and this
requires movement of the gate or regulating apparatus. It is
therefore of importance, where economy in the use of water is
necessary, that a turbine should have a fairly high efficiency
at ‘“ part gate.”

At the outset the statement should be emphasized that
perhaps the most wasteful device for varying the discharge of
water is the “throttling ”’ of the flow by the use of a gate in
the penstock or supply-pipe, or in the draft-tube (see § 51 in
this connection); or by the use of a cylindrical gate encircling
the lower end of a draft-tube; since these either induce losses
of head due to sudden enlargement of waterway, or bring about
impact of the water at the turbine entrance, where for the usual
speed of wheel the value of the angle 3 is only suited to a fixed
value of the velocity w;.

The plain cylindrical gate moving axially is open to similar
objections, unless, as already stated, the turbine channels are
provided with partitions or their equivalents, or have an upper
crown which curves downward.

Perhaps the most perfect ‘“ gate,” from a theoretical point of
view, for a radial turbine is the device of Nagel and Kaemp,
in which not only are the ‘“roofs ”’ of the guide-passages movable,
but also the corresponding crown of the turbine. The crown
being always opposite, even with the roof, sudden enlargement
at the turbine entrance is prevented in all positions of the regu-
lating apparatus. The turbine thus becomes one of variable
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height, e, between crowns. This design is, however, expensive
and attended with practical difficulties.

The three kinds of gate often used with American “inward
and downward ”’ turbines (viz., the cylinder, register, and
wicket gate) have been already mentioned in § 86. See also
§ 79.

The regulation of the Jonval or parallel-flow (“axial”)
type of turbine is usually accomplished by sliding plates or
swinging flaps for closing of the guide-passages. The entire
closing of a number of the guide-passages, instead of the partial
closing of all of them, is found to conduce to a higher efficiency;
since in the former case the value of the absolute velocity (w:)
at entrance of the turbine remains the same as when all the
guide-passages are in use. (See Bodmer for many further
details; also Buchetti, and Mueller.) The “Duplex”’ Jonval
wheel, made by R. D. Wood and Co. of Philadelphia, has already
been referred to in § 86.

In this connection attention should be called to Mr. Thurso’s
valuable article, already mentioned in § 88.

103. “ Mechanical ” Governors for Turbines.—The power to
move the turbine gates is usually furnished by the turbine
itself; but, more frequently, in large modern plants, by a
hydraulic ‘“ relay” motor, or hydraulic piston and cylinder
actuated by water or oil; pressure-water from the penstock, or
oil from a pressure-tank (compressed air above the oil). The
“governor ”’ proper consists of revolving centrifugal balls and
their connections whose change of relative position, brought
about by a slight change in the speed of the turbine (with
which the governor is in gear), moves the proper valves or other
parts necessary to bring into play the motor or mechanism
which moves the turbine gates. Electric governors have been
used, but not extensively.

A mechanism which in its general form has been long in
use in cases where the turbine itself furnished the power directly
for moving the gate, and furnishing an instance of a ‘“mechan-
ical governor,” is illustrated in the King water-wheel governor,
shown in Fig. 83. The turning of the horizontal shaft 7, caused
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by the rotation of the spur-wheel 1, moves the turbine gate.

The vertical shaft, S, carrying the centrifugal balls (B, B)

rotates at a speed proportional to that of the turbine, being in

gear with the latter; and also causes

the continuous rotation, in one direc-

tion, of the wheel 5, connected by a

crank and connecting-rod with arm,

or crank, 4. There is thus brought

about a continual to-and-fro horizon-

tal motion of the upper end of arm 4,

to which are pivoted two * pawls,”

2 and 3, either of which, if hanging

low enough to do so, would by a suc-

cession of direct thrusts against the

cogs turn the wheel 1, and thus either

open or rlose the turbine gate, accord-

ing to which pawl might be in action.

When the speed of the turbine is

normal neither pawl can turn the

wheel 1, since in that case its ex-

tremity is held out of contact with

Fia. 83. the cogs of 1 by a projecting “ peg ”

which slides along the edge of the thin disc 6. At normal

speed of turbine the disc 6 is stationary and in its median posi-

tion; but when that speed changes and the balls consequently

change their distances from the axis of the vertical shaft, the

vertical spindle 8 is moved either up or down and rotates

disc 6 sufficiently to bring one or the other of two depressions

(in the edge of the disc) under the “peg” of one of the pawls,

thus allowing the pawl to drop and actuate wheel 1, which
then moves the gate in the proper direction.

The “Snow Water-wheel Governor ” has been extensively
used both in England and America, using practically the
same design of pawls, etc., as in the King governor, and is
shown in Fig. 84. The turbine gate is moved by the turn-
ing of the vertical shaft PA, which can also, on occasion,
be actuated by the hand-wheel at upper end. The two lower
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horizontal shafts at G turn continuously, being in gear with
the turbine, but the third one, B, turns only, and in the proper
direction, when the speed of the turbine changes slightly from
the normal, and moves the turbine gate by means of the
bevel-gear at B.

104. Hydraulic Governors for Turbines.—The foregoing are
called ‘“mechanical governors,” the power for moving the gate
being furnished directly by the turbine itself. A ¢“hydraulic
governor ”” made by a prominent American firm, the ‘Lom-
bard Governor Co. of Ashland, Mass., and called “Type N”
(among their various designs),is shown in Fig. 85. The ver-
tical hydraulic cylinder, with piston (“‘main piston ”’), etc.,
constituting the ‘“relay motor,” occupies the lower half of the
mechanism in the figure. To the cross-bar secured to the
upper end of the (main) piston-rod are attached two vertical
racks by whose motion the horizontal shaft (seen projecting out
at the right) is made to turn and actuate the turbine gate.
This shaft can also be rotated, if necessary, by the large hand-
wheel seen in front. The small pulley near the top (on left)
is belted to another, actuated by the turbine shaft, and con-
tinual rotary motion of the centrifugal balls results. These balls
when rotating at normal speed stand out considerably from
the axis of rotation. The mechanism is such that if the balls
spread out under the action of an incresae of speed, they depress
the top plate into which the flat springs supporting them
are inserted; and vice versa. This top plate is attached to a
rod which passes down through the hollow vertical shaft carry-
ing the balls, and terminates in a small “primary valve,” a
slight motion of which from its normal position causes ad-
mission of oil (under pressure) to actuate the hydraulic plungers
“of a “relay-valve ”’ device, whose motion causes movement of
the main valve. The office of the main valve is to admit o.1
from a pressure-tank to one side, or the other, of the main
piston whose motion, through the vertical racks and gear-wheel,
causes motion of the turbine gate. The other side of the main
piston is at the same time put into communication with the
‘“vacuum-tank.”



F16. 85. The Lombard ‘‘N’’ Governor.
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A pressure-tank (not shown in the figure) contains com-
pressed air and oil under about 200 lbs. per sq. in. pressure and
supplies oil for the main, and relay, hydraulic cylinders. Pumps
run by the turbine itself pump the oil back into the pressure-
tank from the vacuum-tank as occasion requires. One complete
stroke of the main piston entirely opens or closes the water-
wheel gates; consequently any motion of this piston less than
a complete stroke causes a proportionally smaller motion of
the gates.

The Allis-Chalmers Co. of Milwaukee, Wis., manufacture
the hydraulic-governor designs of the Swiss firm Escher, Wyss,
and Co.

A description of the ‘“Replogle Differential Relay ” gov-
ernor, made by the Replogle Governor Works at Akron, Ohio,
may be found in the Engineering News of Nov. 13, 1902, p.
409. This governor has a heavy ‘‘inertia wheel ” to supple-
ment the action of the ordinary fly-balls when very prompt
motion of the turbine gate is called for.

104a. Fly-wheels.—If a fly-wheel is placed upon the shaft
of a turbine, the inertia of the mass so added tends to retard
a change of speed on the part of the turbine when the ““load ”
changes, thus giving the governor and its accessories more
time to act, and enabling the speed to be kept within a smaller
range of variation. The revolving part of an electric generator
is sometimes made to serve the purpose of a fly-wheel, as oc-
curred with the turbines in Power-house No. 1 of the Niagara
Falls Power Co., no other fly-wheel being found necessary.

Mr. Thurso mentions the case of a 1000-H.P. turbine at
Jajce, Bosnia, (see reference in § 88,) as using a hydraulic gov-
ernor which keeps the speed within 14 per cent. of the normal.
A small fly-wheel is employed to assist the governor.

\!
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CHAPTER VII.
CENTRIFUGAL AND “TuURBINE”’ PuMpes.

105. Turbine as Centrifugal Pump.—Let us suppose that
we have a radial outward-flow turbine in steady operation, as
in Fig. 45 (which see), and that suddenly the depth of the tail-
water is largely increased so that its surface T is at a higher
elevation than that, H, of the ‘“head-water ”” or supply reser-
voir. To keep up the same flow of water as before, radially
outward through the turbine passages, will necessitate the
application, to the turbine, of working forces from some external
source of power, such as a steam-engine. That is, instead of
providing a resistance R’ lbs. at the periphery of the upper
pulley M on the turbine shaft to prevent acceleration, we must
now furnish a working force P lbs. (pointing toward the right
on the near side of the pulley M) to prevent retardation. The
work done by P each second is Pv ft.-lbs. per sec. and is em-
ployed in maintaining the steady flow. Since water is now
being raised from a lower to a higher level, the turbine has
become a pump; called a “centrifugal pump.”

In actual centrifugal pumps there are ordinarily no guide-
blades at G (Fig. 45) inside the wheel, but of late years (since
1900, about) many such pumps have been built with guide-
passages outside the wheel (or “impeller,” as it is called) with
gradually enlarging passageways constituting a ‘diffuser,”
to diminish losses of head at that point; with consequent
improvement in efficiency. To this more recent variety of
centrifugal pump the name “turbine pump ” is now frequently
applied (1905).

In a centrifugal pump the action of the water on the “im-
168
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peller” is equivalent to a resisting couple, instead of a working
couple, and the moment of the working force P about the axis
of the shaft is numerically equal to that of this couple (aug-
mented by moment of axle friction); the rotation being uni-
form and the flow ““steady.”

From the figure (45), the vanes of the turbine (now pump)
being curved backwards as regards the direction of rotation,
it is seen that these vanes tend to crowd the water radially
outward; but even if the vanes were straight and were radial,
the same general effect would be produced if the speed were
sufficient; since, from its ‘“inertia,” a particle of water tends
to persist in a straight-line motion and thus incidentally to
increase its distance from the axis of the wheel. In a rough
general way this outward flow of the water between radial
vanes is sometimes said to be due to ‘“centrifugal force,” and
rude methods of analysis have been based on this idea. It
is better, however, to avoid these imperfect notions of ““cen-
trifugal force” and to use the relations that have been proved
to apply to the steady flow of water in uniformly rotating
channels and pipes; as already established in §§ 31-42a (see
particularly §§ 35a¢ and 42a). These relations were, of course,
based on the fundamental laws of mechanics as applied to a
material point.

106. Notation for Centrifugal Pump.—The number of vanes
used in the majority of centrifugal pumps is so small (four to
ten, perhaps) that the guidance of the water is far from perfect
and consequently the theory now to be presented must be
considered as giving results that are only roughly approxi-
mate; especially as the frictional conditions in these pumps
are only imperfectly understood. Certain general indications,
however, are clearly brought out by theory.

The pump to be considered is one with a horizontal shaft,
and is placed above the source of supply, a suction-tube being
therefore necessary. Fig. 87 gives a vertical section through
the axis of the shaft; the shaft and the crowns or side plates
of the “impeller,” or revolving part, being shown in solid
‘black shading. Steady flow of the water, with full pipes and
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passageways, and uniform angular velocity w of the impeller,
are postulated.. Fig. 86 gives a vertical section, at right angles
to the shaft, showing the (six) impeller-blades or vanes, such
as A..N, the supply-reservoir T, and receiving-reservoir H;
also suction-tube (or supply-pipe) DD, conducting the water
from T to the central space, S, of the impeller; and the delivery-
pipe EJ. The casing, XYZ, within which the impeller rotates
is of the scroll or “volute” form so commonly used; and may

lM-;PELI.ER

Fia. 87

be looked upon as a single external guide-blade, the average
radial width of the volute space increasing from E toward X,
G, and K, to provide for the increasing number of water fila-
ments issuing from the outer edges of the impeller-vanes; hence
the velocities of these filaments are about equal. All of these
filaments have to pass through the horizontal section at E at
the base of the delivery-pipe J. Upon the shaft is supposed
to be secured a gear-wheel, W, at whose periphery (*pitch-
circle”) a constant tangential pressure, or working force,
P lbs., is assumed to be acting; furnished by a motor of some
kind (a steam-engine, say), and of suitable amount to main-
tain uniform motion of the pump and steady flow of the water.
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The linear velocity of the point of application of P being de-
noted by v (=wr, if r is the corresponding radius), the power
exerted by P is Pv ft.-lbs. per sec. At the entrance, 1, of the
impeller channels the absolute veloeity w; of the water is sup-
posed to be radial, since there are no internal guides. The
tangent to the impeller-blade at that point is supposed to be
placed at such an angle 8 with 1. .{, the tangent to wheel-rim,
or circle of rotation, at 1, so as to avoid impact. That is, the
former tangent should follow the direction of the relative
velocity ¢; at point 1. The linear velocity of wheel-rim at 1
is v1=wry, and the width between crown-plates is e; (see Fig.
87). Similarly, v,, €., and r, refer to the exit wheel-rim, or N.

The absolute path of a particle of water from entrance to
exit of wheel is shown by the dotted line 1..N, the vane
along which it moves having passed from position 1..F to
position A..N. The absolute velocity w, of the particle
at N is the diagonal of the parallelogram on the wheel-rim
velocity at N, viz., v,, and the relative velocity ¢, which is
tangent to the vane curve at N and makes some angle & with
the wheel-rim tangent N¢. The angle between w, and wheel-
rim tangent is g, so that its component tangent to the wheel-
rim is u, =wy, cos #, called the ““ velocity of whirl,” and its radial
component is V,=w, sin g, called the velocity of flow.

Evidently at the entrance, 1, the velocity of whirl is zero
and the velocity of flow is Vy=w,, itself. ‘

Figs. 87a, 87b, and 87c show a section through the shaft, a
section transverse to the shaft, and a perspective of the im-
peller, respectively, of the centrifugal pump made by the
De Laval Steam Turbine Co. of Trenton, N. J. The impeller
is of the ‘“enclosed ”’ type. (See § 114.)

107. Form of Loss of Head to be Considered.—In the theory
now to be given the only loss of head (and corresponding waste
of power) that will be considered will be that due to the more
or less abrupt change of absolute velocity occurring in the
water just after exit from the impeller passages. In the pumps
of older design in which the water at exit is discharged into a
body of water having a much smaller absolute velocity this loss

(v
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of head is perhaps greater than that due to any other cause.
2
It may be written in the form %"—, in which the value of the
coefficient ¢ would be given by Borda’s formula (p. 721, M. of
E.). If the velocity finally assumed by the water in the volute
space is only one fifth of w,, or smaller, the value of ¢ is prac-
tically unity or 1.0. If, however, the change of absolute
velocity at exit is made gradual by gently flaring passage-
ways between fixed guide-blades, the value of ¢ may be as low
a8 0.2 or 0.3 (if we may judge from experiments made on the
loss of head occurring in the down-stream diverging portion
of a Venturi meter; see p. 726, M. of E.). But to offset the
fact that the losses of head occurring in the impeller channels
themselves will be ignored in the theory now to be developed,
it would probably be advisable to take no lower value than
0.5 to 0.6 for ¢, even in the case of a “turbine pump’ (that
is, one provided with external guide-blades); while for the
ordinary pump with the usual abrupt change of section from
impeller to volute space ¢ may range as high as 1.5 (especially
with high heads; over 20 ft.) in order to include losses * in impel-
ler channels with the loss after exit due to sudden enlargement.

The neglect of losses of head in both suction-pipe and
delivery-p'pe implies that they are so wide and short that
the skin friction therein is negligible. (In this connection, see
§§ 115, ete.)

108. Theory of the Centrifugal Pump, Speed of ¢ Impend-
ing Delivery.”—If the centrifugal pump itself and both pipes
have been originally filled with water, a foot-valve being pro-
vided at the base of the suction-pipe to prevent a backward
flow before the pump is started, the question arises as to how
great the speed of rotation must be before any upward flow
at all is brought about. In other words, what must be the -
velocity, va, of the tips of the impeller-blades, such that the
only effect is to prevent any downward flow on the part of
the water in the delivery-pipe and ‘upper reservoir? When
this state of equilibrium occurs the water in both suction- and

* Such losses may be considerable if the interior surfaces are those of rough
castings.




F1G. 87c. The DeLaval Impeller.
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delivery-pipes will be at rest, and that in the impeller passages
will rotate with the impeller without travelling either to or
from the axis. Hence the fluid pressure, p,, between the re-
volving water and the stationary water in the upper pipe is
the hydrostatic pressure due to the depth A, of point N below
surface H, plus atmospheric pressure (let b denote the water-
barometer height); that is, pp=(ka+b)r; also, the fluid pres-
sure p; at point 1 is that due to the depth of point 1 below
an imaginary water surface 34 ft. (ie, b ft.) above 1, or
pr=(b—hy1)7, where h, is the height of point 1 above surface
T of lower reservoir. (In Fig. 86 the pump is above the supply-
reservoir T'; if it were at a lower level, p, would be = (b+h,)7,
but the final result would be the same.)

In this case we may consider the water in the pump-channels
to have a steady flow outwards from 1 to N with relative
velocities (c; and ¢,) =zero, and apply Bernoulli’s Theorem
for a rotating channel, etc., i.e., eq. (16) of § 42a; in which
both ¢; and ¢, will be zero, and p; and p, will have the values
just given; while the loss of head A" will be zero since there
is no flow; whence we have

v2—0,2

b+hn+0=b—h,+0+ % ot @

Solving, we have, after noting that hy+h,=h, and that v,=

Va(T1+Tn), -
v,.'=(\/§g—h)+<\jl—-<£>2) N )

as the value for the linear velocity of the tip of the impeller-
blades necessary to keep the water from flowing back; or it
may be called the “velocity for impending delivery,” since, if
the speed is increased beyond this, a flow will take place up
the delivery-pipe.

For example, if in Fig. 86 r; is taken as one-third of r,, and
the minute and foot be used as units, we have (very nearly)

v’ =[500v'h (in ft.)] feet per minute. . . . (3)
With a very small 7, (call it zero) we derive 481 instead of
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the 500. Experiment shows that frictional conditions and
also the shape of the blade have an influence on the value
of v,/ for impending delivery. Results quoted on p. 98 of
Engineering News for August 1900 are as follows: Instead of
the 500 in eq. (3) above, the following numbers were found, in
the case of pumps 24 in. in diameter with r, = about one-half of r,:

For blades curved about as Fig.'86 (6=27°).... ... 610
(X4 ¢ (43 ¢ (43 (X1 ¢ (3=180) ....... 7&)
Straight radial blades. . ......................... 480
Straight blades leaning backward about 45°........ 554

Curved blade somewhat like that in Fig. 86 and with
its chord in same position, but concave on the
advancingside. .. ........... ... ... ... ..., 394

Theoretically, in such a case, since no water is pumped, no
power ' Pv) is required to maintain the rotation of the pump;
that is, if once started it should continue the motion indefi-
nitely; but practically, on account of the friction between
the rotating water and the stationary water in the pipes and
between the discs or crowns and the surrounding water, to-
gether with axle friction some little power is necessary to
keep up the motion. After pumping is once started the velocity
of the tips may sometimes be allowed to sink below the value
of eq. (3) if the pump contains provision for a gradual enlarge-
ment of section in the casing at exit from the wheel.
<" 109. Theory of the Centrifugal Pump, with Friction. Best
Velocity. Maximum Efficiency.—Rcturning to Figs. 86 and
87 and assuming a steady flow of water, all passages full, and
uniform rotation of pump with angular velocity w, with other
notation of § 106; also @ denoting the rate of discharge, or
cub. ft. per sec. of water pumped. At first all the quantities
concerned, except h, 1, 74, and 8, will be considered varxable
Later, special conditions will be imposed.

Applying the equation for power based on ‘ angular momen-
tum,” etc. (eq. (10) of § 34); (see also § 35) (work per second
done on equivalent couple), and remembering that in this
case u; is zero and that the couple representing the action of
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the water on the wheel is a resisting instead of a motive couple,
we have, neglecting axle friction,

Pv=%vnun (ft.-lbs. per sec.) power . . . (1)

required of the working force P for steady motion. But, con-
sidering the whole collection of moving “rigid”” bodies, in-
cluding each particle of water, but ignoring the power spent
on axle friction, and considering all fluid friction to be en-

y. 2
tirely represented by Qy Xloss of head _{’;{7" (see § 107), we also

have, from eq. (15), § 42a,
_ <
Pv—Qr[h+ % ], B )]
also, w; being radial, w=Vi.. . . .. 000 3

From trigonometry,

w2=u2+V2, . . . . . . . @)
Va=uptang, . . . . . « . . (5
Va=@n—uy) tand, . . . . . . (6)
and cncosd=v,—Vo . . . . . . @

The equation of continuity of flow is
Q=2zrne,Vy=27re:Vy; . . . . . (8
that is, eV p=r1e1Vi. . . « « . . (9
Also, vntanf=w;, . . . . . . . (10)
VI=@r, « . . e oo . . (11)
and Th=Wre « « + o « . . (12)

Combining (1), (2), and (4), we eliminate P, v, Q, 7, and
w,, obtaining
20h=2unv,— (V2 4+us?), . . . . . (13)

in which, if for V, we substitute its value (v,—u,) tan 8, from
(6), there results

2gh=2unvn— ¢ tan? 0(va? —20nUn +ua?) — LU . . (14)

12
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Now the efficiency 7 is equal to the ratio of the portion of
power applied to the useful purpose of raising Qr lbs. of water
through an elevation of h ft. each second, to the whole power,
Pv, exerted by the working force per second; i.e.,

h
A e T
or [see eq. (1))
gh

T UnVn

v . . . . . . . (15)

The value of A from (14) may now be substituted in (15),
yielding
_ __C[ 2 g2 u_ﬁ Un
=1 5 tan 8u,, 2+'v +vn R ¢ ()]
Evidently (16) gives the efficiency as a function of the ratio
Un+Vn; and if that ratio be denoted by z, that is, if x=%,

(16) may be written
n=l—g[tan2 6(;61-—2+:c) +x], A ¢ ¥4

which is a function of but one variable, z.
By differentiation,

%= —-g[tan2 a<—}1—2+1) +1]; ... (8
the placing of which equal to zero gives the special value of z
(call it /) which makes » a maximum, viz.,
o tan o0
V1+tan? ¢’
i.e., for a maximum efficiency we must make
Un=VpSINd, . . . . . . . (20

and this relation substituted in eq. (14) gives, after considerable
reduction, the value of v, for best effect, viz.,

, N/ gh(1 + sin )
vn = M .
Vsin 8[1 +sin 6(1-¢)]’

or Z’=sind; . . . (19

e .. (2D)
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while the corresponding maximum efficiency itself becomes
[see eq. (17)],

4
’ — s
7 =1_cosec6+1' e e e .. (22

As to the influence of the choice of the exit vane-angle &
upon this expression for the maximum efficiency, we note
that the latter is the largest possible, viz., 1.00, when ¢=0°
This supposition, however, would imply a zero discharge, .
which is inadmissible. It would also make the corresponding
v, =infinity. But it is evident that & should be taken as
small as practicable, say from 15° to 30°. If ¢ were as great
as 90° (radial tips) and the friction coefficient ¢ as large as
1.00 (which would doubtless be justified if the casing surround-
ing the pump did not provide a gradually enlarging passage-
way, with guides, for the water leaving the pump), we should
find from eq. (22) that »’ is only about 0.50. The correspond-
ing value for v,/ from eq. (21) proves to be v,’=v'2gh. In
fact, Prof. Zeuner states, in his book on “Theorie der Tur-
binen,” that the peripheral speed of most centrifugal pumps
in regular service should not gneatly exceed this value, v 2gh.

That a greater efficiency is obtained from 1mpe11er-blades
curving backward as in Fig. 86, as against that obtained when
straight radial blades are used (8=90°), was conclusively
proved by actual test in 1851 by Mr. Appold, who introduced
the curved blade.

110. Nuxerical Example. Centrifugal Pump. — A cen-
trifugal pump having external guides (“diffusion-guides’’)
providing for a gradual change of absolute velocity for the
water as it leaves the impeller-blades (and hence now called a
““turbine pump’’) is to be designed for a head of h=36 ft., is
to pump Q=50 cub. ft. per sec. in steady operation, and is to
work at an angular speed of 300 revs. per min. The angle &
is to be taken=30° and r, as =3r,. The suction- and delivery-
pipes being short and wide, no loss of head will be considered
as occurring in them.

Solution (the ft.-1b.-sec. system of units being used).—Taking
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a value of 0.5 for ¢ from the favorable conditions provided
by the guides at exit, we find the best velocity for the im-
peller-tips to be, from eq. (21),
32.2X36(1+0.5)
0.5[1+0.5(1-0.50)]

To find r, that the angular speed may be 300 revs. per min.,
we write

=52.8 ft. per sec.

'vn, =

27tr,.<3€?: ) 52.8; whence r,=1.68 ft.;

and hence r;, =4r,, =0.84 ft.

As for the distance between crown-discs (or sides of the
chamber, if there are no crowns), we have, from eq. (2),
Un=70," sin &; that is, u,=52.8X0.5=26.4 ft. per sec.; and
hence, from eq. (6), for ‘“velocity of flow” at N,

Vn= (vn’ -un) tan 3= (52-8_26-4)0.577,
=15.2 ft. per sec.; and hence, finally, from eq. (8),

__Q __ 5
e onraVa  27(1.68)15.2

or (say) 0.33 ft. to allow for the thickness of the (six or eight)
impeller-blades; i.e., e,=4 inches.

In order to secure a moderate absolute velocity of flow,
V1, at the entrance of the impeller channels, e; may be as-
sumed equal to 3en, i.e.,=1.00 ft.; hence, from eq. (9), we have
the ‘‘velocity of flow” at entrance, V,=%V,=10.1 ft. per
sec., which also =w, since the latter is supposed radial. The
necessary value for the vane-angle at entrance, i.e., 8, follows;
viz., tanﬁ=%=%=%—;g—i-—0485 or A must be taken
as (say) 26°. A smooth curve AN (see Fig. 86), having the
proper values for B and d at its extremities, and convex on
its advancing side (as in that figure), will serve as the form of
the (thin) impeller-blade.

As to the efficiency and necessary power to operate the
pump, we have from eq. (22), with ¢=0.50 and angle d=230°,

=0.311 ft.,
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0.50
2.00+1

y=1- =0.83;

which may be called the ‘hydraulic efficiency,” since it leaves
out of account the power spent on axle friction of the pump.
Deducting 0.05 for this cause we obtain 0.78 as the value of
the efficiency from which the necessary power is to be com-
puted. - Therefore, placing q’—%;b, we have Pv=Qrh+7'; ie.,
Py=(50X%62.5X36) +0.78, =144,200 ft.-lbs. per sec.; or 262
H.P.; since 144,200 - 550 = 262.

From -the acknowledged imperfection of the theory, these
results must be looked upon as only roughly approximate.
Much experimentation is still needed to supplement the de-
ductions of theory.

111. Practical Points.—When the pump is situated above
the source of supply, T, and a suction-pipe is therefore neces-
sary, its elevation above T is of course restricted (as in the
case of the draft-tube of a turbine) to a value considerably
less than that of the water-barometer height. In such a case,
when the pump is to be started, it is found impossible by the
rotation of the pump itself to exhaust the air from the suction-
pipe. This must first be done by closing the foot-valve at the
base of that pipe and filling up with water; or, after closing
a valve in the delivery-pipe, to exhaust the air by the use
of a steam-ejector, as is frequently done when a steam-engine
is the source of power, the water being thus caused to rise in
the suction-pipe by the pressure of the atmosphere on the
lower reservoir.

If the suction- and delivery-pipes have considerable length
and the respective losses of head thus occasioned, when the
flow Q is passing through them, are #’ and A"’ respectively,
and if the water is delivered in a free jet, of w’ ft. per sec. velocity,
at the point of delivery, then the h of the preceding theory
will be replaced by

2

’ o W - - =
h+HW +hk +2g' N $22))
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It amounts to the same thing to say that if piezometer
tubes are arranged for the two pipes, at points near the pump
(see now Fig. 5,in which the flow of water must be conceived
to be from K toward A; through the casing M, which is now
supposed to contain the pump, in steady operation), then the
h of the preceding theory is to be replaced by the & of Fig. 5,

02 v,2
augmented by the term [uT; —%]; where w; is the (mean)
velocity of the water passing at A, and wy its velocity as it
passes section KH; see example in § 13.

The surfaces of the impeller-blades should be as smooth
as possible, this being conducive to higher efficiency. Ex-
periment has shown this (see Barr's Pumping Machinery,
p. 343).

112, Centrifugal Pumps without Gradual Enlargement Beyond
Exit.—This older style of pump has been found to give fairly
good results only with low heads (say below 30 ft.), the high
velocity of impeller and water necessary at high heads causing
a large amount of fluid friction, eddying, etc., giving rise to
large losses of head. A good example of the ordinary cen-
trifugal pump with volute, etc., but without external guides,
is shown in Fig. 88 (the Van Wie pump, made at Syracuse,
N. Y.). The suction-pipe is attached at S and the delivery-
pipe at R. E is a steam-engine furnishing the power to operate
the pump; while F is a fly-wheel. Pumps of this type have
given efficiencies, under low heads, as high as 65 per cent.,
or over.

In the new water-supply system of Rockford, Ill., designed
and carried out by Prof. D. W. Mead in 1897, three cen-
trifugal pumps are used, constructed by the Byron Jackson
Machine Co. of San Francisco, which gave on test efficiencies
of from 70 to 75 per cent. Each pump worked against the
same head, 100 ft., of which 26 ft. was ‘suction-head.” The
impellers, 3.5 ft. in diam., are of bronze and have carefully
smoothed interior walls. They are of the enclosed type (see
§ 114), with blades curving backward (d=about 30°), and
have ‘“dead-spaces” toward the outer rim between water-



Fic. 88.

183



184 HYDRAULIC MOTORS. § 113.

channels (see pp. 302 and 607 of Turneaure and Russell’s
Public Water-supplies; also p. 18 of Engineering News for
July 13, 1899). A valuable article by Mr. Richards may be
found in vol. xxxviii of the Engineering News, pp. 75 and 91.

113. Turbine Pumps. Multi-stage Pumps.—Within a few
years * centrifugal pumps have been constructed in Europe,
and more recently in America, attaining a high efficiency under
high heads by the use of gradually enlarging guide-passages
receiving the water immediately on exit from the impeller
channels, thus enabling its velocity to be gradually reduced
from the value, wy, at the exit-point of impeller to the slower
velocity of the delivery-pipe or other passage provided. These
are called ‘“turbine pumps.” A ‘“multi-stage” pump consists
of a series of two or more impellers on the same shaft, each
pumping water into the central space of the next adjoining
(except that the last one pumps into final delivery-pipe), the
peripheral pressure of one being therefore nearly equal to the
central, or receiving, pressure of the next. The intervening
stationary guide-passages are so designed as to produce only
gradual changes in the absolute velocity of the water, and com-
paratively high efficiencies are thus attained. By this device a
high head (say 1000 ft.) can be broken up into steps, as it.
were, each impeller having to deal with a difference of pressure
corresponding to the fraction of the whole head whlch corre-
sponds to the number of impellers.

A good example of a multi-stage turbine pump is shown in
Fig. 90 (which gives a section through the axis of rotation)
and Fig. 89 (showing a section, at right angles to the shaft,
through one of the four impellers). In the latter figure the
walls of the external flaring guide-passages are shown in solid
black shading. The impeller is seen to have six long blades
and six intervening short ones, all curving backward with
respect to the motion of rotation (with 8 and & each = about
45°). By proper passageways the water is conducted from
the space outside of an impeller to the central space of the next

*See Mr. Webber’s article in Cassier’s Magazire for Jure 1905, p. 154.
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one of the series and finally into the delivery-pipe (for detailed
explanation, see Engineering News, Jan. 1902, p. 66). The
diameter of each impeller is 20 in. and (on test) water was pumped
at the rate of @=2.47 cub. ft. per second against a head of
425 ft., the pump rotating at 890 revs. per min. Each im-
peller therefore had to pump against a difference of pressure
corresponding to a head of 106 ft. In the same test the effi-
ciency was found to be 76 per cent. This pump was designed
and constructed by the firm of Sulzer Bros. of Winterthur,
Switzerland.

On p. 324 of Engineering News for April 7, 1904, may be
found an illustrated article describing several ‘ High-pressure
Multi-stage Turbine Pumps” built by the Byron Jackson
Machine Works of San Francisco, California. (Quoting from
this article:) “Pumps of this design are built for heads of from
100 to 2000 ft., the number of separate impellers or ‘stages’
being properly proportioned to the head. About 100 to 250 ft.
head per stage appears to be allowed.” A two-stage pump
built for the water-works of the city of Stockton, Cal., delivers
1500 gallons per minute against a head of 140 ft. at 690 revs.
per min. The pump was guaranteed to have an efficiency
of at least 75 per cent., but developed 82 per cent. at the official
test

Since the water is usually admitted to the central impeller
space from one side only, an end thrust of the shaft
against its bearings is thereby created unless prevented
by special device'. In Fig. 91 is shown a section (through
axis of shaft) of a 6-in., six-stage, ‘‘spherical,” ‘compound
pump”’ (i.e., multi-stage pump) built by the Lawrence Machine
Co. of Lawrence, Mass., and so constructed, by the arrange-
ment of the impellers in pairs and by the position of the inter-
vening guide-passages, that the resultant end thrust is zero.
‘To quote from the printed circular: ‘“These pumps, like all
of this type, are provided with diffusion-vanes directly at the
periphery of the impellers, and, unlike others of their type,
the liquid is not forced through short tortuous passages imme-
diately after passing through the diffusion-vanes, before enter-
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ing the next successive impellers, but instead through long easy
passages of uniform cross-section and easy curves.” The term
“ spherical ” is due to the outside appearance of the pump-case.

114. Practical Notes.—Since there are no valves or other
-moving parts in a centrifugal pump, except the impeller itself,
this type of pump is admirably adapted for the pumping of
viscous and stringy liquids, or liquids containing sand or silt
in suspension, or even carrying chips, bark, and gravel.

The large hydraulic dredges used by the Mississippi River
Commission pump the river-water, charged with silt or sand
by previous stirring of the bottom, through long pipes to a
“‘spoil-bank >’ at some distance, thereby deepening the channel
for purposes of navigation. (See reference in § 13; also En-
gineering News, Oct. 1898, p. 236.)

Another advantage is that, since the centrifugal pump is a
body rotating continuously in one direction, the shaf may be
coupled directly to that of an electric motor. - A pump having
crowns or discs forming part of the impeller is said to be of
the “enclosed ” type. If it consists merely of the impeller-blades.
fastened to and projecting from a spindle or shaft, it is called
“unenclosed.” In this latter case the stationary sides of the
pump-case serve as crowns, the edges of the impeller-blades
revolving almost in contact with them.

p



CHAPTER VIIL
Pipes, WEIRs, AND OPEN CHANNELS.

(Note.—This chapter contains matter supplementary to
Chapters VI and VII of the writer's Mechanics of Engineering.
Bernoulli’s Theorem for steady flow of water in (rigid, station-
ary) pipes and stream-lines is already proved in §§ 492 and 512
of that work.)

115. Friction-head in Long Pipes.—Since long pipes and
penstocks are frequently used to convey water to hydraulic
motors, the loss of head so occasioned is an important con-
sideration. For a steady flow of water in a stationary rigid
pipe of cylindrical form the loss of head due to fluid friction
(see eq. (4), p. 700, M. of E.) is conveniently expressed in the

form 4fl
hp=7--2§, B 0))]

where 1 is the length and d the internal diameter of the pipe, »
the mean velocity (component parallel to axis of pipe) of the
particles of water passing through any given cross-section (gen-
erally about 83 per cent. of the velocity of particles near the
center of the section) and f a ““coefficient of fluid friction,”
. or abstract number, to be determined by experiment.

The volume of water flowing per second is, of course, Q=F,

nd?

For new and clean cast-iron pipes, and for such small sizes
of wrought-iron pipe as involve no riveting, Mr. Fanning’s
tables of values for the coefficient give fairly trustworthy
results; but much time may be saved by the use of diagrams

188
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which enable the friction-head itself to be found with great
directness. Of course in such a case it makes no difference
whether the formula upon which the diagram is based is simple
or complicated. The diagrams prepared by the present writer
for pipes of above description, founded on Mr. Fanning’s
values for f, have been placed in the Appendix of this work.
Results obtained from these diagrams will be found to differ
but slightly from thosc based on Mr. Metcalfe’s ¢ Diagram D,”
published in the Engineering Record of June 20, 1903. This
diagram is stated by Mr. Metcalfe to be “ for general use with
new cast-iron pipes’’ and is based on the Hazen-Williams for-

mula,
(mean velocity) v=71.6d1°“'"s’“°"'; I )]

in which s denotes the ratio _’EZE and the foot and second are

to be used as units. (For an account of the Hazen-Williams
hydraulic slide-rule, see thc Engineering Record for March 28, -
1903.)

With increasing age of service cast-iron pipes are liable to
become corroded and tuberculated (if originally tar-coated this
action may be much retarded), which diminishes the discharge
under the same head (both from increased roughness and
diminished sectional area).

Mr. E. B. Weston recommends that for pipes of cast-iron
the friction-head for a given Q be taken as 16 per cent. greater
than when the pipe is new and clean, for each five years of age.
For example, for an age of 15 years take as the friction-head
for a given flow @, and per 1000 ft. of length, the value obtained
by multiplying the result given by the diagram by 1.48.*

According to the recommendations of Mr. Metcalfe (see above
article), we may find the friction-head hr for old and tuber-
culated pipe for a given mean velocity by taking }$3 of that
given by the diagram for clean cast-iron pipes for the same
velocity; or, to put it another way, for a given friction-head
the velocity obtained from the diagram for clean cast iron pipe
must be multiplied by 4§ to give the velocity for the tuber-

* A useful book in this connection is'‘ Hydraulic Tab'es,” by Prof.G. S.
Williams and Mr. Allen Hazen (New York: John Wilev & Sons, 1905).
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culated pipe. However, considerations of friction-head in
old and tuberculated pipes involve much uncertainty.

Similarly, according to Mr. Metcalfe’s article, in the case
of riveted iron and steel pipe, the coefficient f is so increased
(on account of the projecting rivet-heads, etc.) that a value
of the friotion-head taken from a diagram for clean cast-iron
pipe must be multiplied by $3$ to give that for the riveted pipe
for the same diameter and velocity; or, conversely, if the
value of the mean velocity has been taken from the diagram
- for clean cast-iron pipe for a given diameter and friction-head,
it must be multiplied by 4§ to give the proper velocity for the
riveted pipe.

116. Conversion Scales.—From the fact that great nicety is
useless in computations for hydraulic problems involving
friction-heads, it is sufficiently accurate in most cases to use
values taken from diagrams; to expedite the work (and, in-
cidentally, to avoid gross errors).

In the Appendix to this work will be found a page of “con
version scales,” by the use of which the velocity-head, h,,
corresponding to a given velocity, v, may be found, and wvice
versa, the hydrostatic pressure, p, in lbs. per sq. in., due to

a “pressure-head,” or static head, h=£, of water, in feet; or

the pressure-head, % in feet, corresponding to a given pressure,

p, in lbs. per sq. in., ete.; and scales for converting a discharge,
Q, in cub. ft. per second, into gallons per minute; etc., ete.

The quantities involved in any two adjoining scales are
directly proportional to each other except in the case of the
velocity-scale, where the velocity-head h, is proportional to the
square of the velocity v. In the use of the velocity-scale,
therefore, this relation must be borne in mind in dealing with
values that extend beyond the limits of the scales. For ex-
ample, if the velocity-head h, for a velocity of v=120 ft. per
sec. is desired, find the h, for one half of 120 (i.e., for 60) or
56 ft., and multiply by 4, which gives 224 ft.; and, again, if
we wish the velocity corresponding to an k,=180 ft., we first
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find the v (or 35.8) for 20 ft., which is one-ninth of 180, and
multiply by 3, obtaining 107.4 ft. per second (or find » (=53.8)
for one-quarter of h, and multiply by 2).

117. The Hydraulic Grade-line.—This has been defined
(see p. 715, M. of E.) as the line containing the summits of the
stationary water columns in the open piezometers that may
be imagined to be placed at various points along a pipe in
which water is flowing in ““steady flow.” Along a straight
pipe of uniform diameter this line is straight and slopes down-
ward for points farther and farther down-stream (the slope
of the pipe itself is immaterial). The reason for this inclined
position is the friction-head along the pipe; if this were zero,
the grade-line would be horizontal. But if a portion of pipe
has a decreasing sectional area (going down-stream) (e.g., a
conically converging pipe), the grade-line drops more rapidly
on account of the increase in velocity-head in successive cross-
sections; and, conversely, along a portion of the pipe which
is conically divergent the grade-line rises (unless the divergence
is so slight that the rise due to decrease in velocity-head is
offset by the drop due to friction-head). All of these state-
ments are easily proved by the application of Bernoulli’s
Theorem to the two extremities of any given portion of the
pipe. A few numerical examples will now be worked out in
iliustration of the conception of the hydraulic grade-line and
also of the use of the friction-head diagrams (Appendix).

118. Numerical Problems. (I) Single Pipe; without Nozzle.
—Fig. 92. A steady flow of water is taking place through
the horizontal cylindrical pipe (clean cast-iron pipe), whose
length is 80 ft. and diameter 4 in., from the large reservoir R.
_The entrance of the pipe at E is not rounded. The head
h=9.3 ft. There is no nozzle at the end m of the pipe, so that
at that point the jet entering the atmosphere has the same
sectional area as the pipe and a mean velocity v. equal to
that, v, in the pipe. At any point, such as S, (not nearer than
12 inches to the side of reservoir,) if the length ES=uz, we find,
by applying Bernoulli’s Theorem between the point S of flow
and the surface of (still) water in R, that the height of the
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open piezometer at S is
_ 2 v2
PS, =y, =h—%—Cz2—g—hz; N €]

where h, is the loss of head due to skin friction along length
ES of pipe, and equals the vertical drop from B to P; and

Ul
CE-2?; is loss of head at entrance E (see pp. 706 and 711, M.

of E.).
Now h_ is proportional to z and becomes =hg or vertical
drop from B to m when r= whole length I, hr being the friction-

head for whole length of pipe. Here (no nozzle) the velocity
v="vm, and is to be determined. Therefore y=zero at m;

2
and h=cE%+hF+%.. e L@

The whole & is seen to be made up of three parts, of which, in
this case hp (there being no nozzle) will probably be nearly
equal to h itself. We shall now solve by trial, using the
friction-head diagrams in Appendix.

Assume as a first trial value that hp="7 ft. This is at the
rate of (7-+0.080=) 87.5 ft. friction-head per 1000 ft. of pipe
length. Turning now to the diagram for the smaller pipes
(3 to 8 in. in diameter), we find the vertical line corresponding
to 87.5 among the figures along the upper edge and note its
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intersection with the oblique line marked ‘“ 4-in. pipe.” Among
the other oblique lines (velocity lines) this intersection-point
corresponds to a velocity of 9.1 ft. per sec., for which (see
highest scale on page of ‘“Conversion Scales,” Appendix) the
velocity-head, or v2+2¢, =1.3 ft. Since ¢£=0.50, or %, the
loss of head at E is 3(1.3) =0.65 ft. Hence the sum

0.65+7+1.3=8.95 ft.

But this lacks 0.35 ft. of what it should be, viz., 9.30 ft.
For the next trial it will probably occasion no great error if
the whole of this 0.35 be added to the original 7 ft. That is,
assume hp=7.35 ft., which is at the rate of (7.35+0.080=)
92 ft. friction-head per 1000 ft. of pipe. The diagram now
gives v=9.4 ft. per sec. in a 4-in. pipe, and the velocity-head
=1.4ft. and } of 1.4=0.7 ft. Adding, we have 0.7+7.35+1.4
=9.45 ft., which is so near to the required 9.3 ft., or h, that
this second trial may be considered final. The corresponding
discharge is Q=0.81 cub. ft. per sec. (found by following a
horizontal line, through the intersection of the vertical 92 and
the 4-in. pipe line, to the scale on right-hand edge of diagram).

In Fig. 92 the vertical distance AB is the sum of the en-
trance loss of head and the velocity-head 2+2g. In the
contracted vein at E the pressure-head is less (velocity being
much greater) than for the point under B, which is about
three diameters or 12 inches from the side of reservoir. Most
of the entry loss of head occurs between the neck of the con-
tracted vein and a point under B, but it is less than the differ-
ence of velocity-heads at that point and B.

Note.—If the jet discharges under water, the results are
the same provided the surface of the water in the receiving-
reservoir is 9.3 ft. below that in the supply-reservoir R (both
reservoirs large).

It is immaterial whether the pipe is horizontal or not, if
1=80 ft. and h=9.3 ft.

119. Numerical Problems. (II) Single Pipe; with a Nozzle.
(Fig. 93.)—Clean cast-iron pipe of 6 in. diameter, 1600 ft.
long; with a gradually tapering nozzle (or “ play-pipe,” for a

13
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fire-stream). At the tip of the nozzle the water forms (in the
atmosphere) a jet with parallel filaments (no contraction) and
a diameter d,,=2 inches. The head k is 90 ft. and the loss
of head in the nozzle may be taken as 0.05 (or 1/20) of vm2+2g,
where vy, is the velocity of the jet;* while the entry loss of head
at E (corners not rounded) is 4 of v2+2g, v being the velocity
of the water in the 6-in. pipe. From the equation of continuity,
the pipe running full, and the flow having become steady,
we have v,,=9. It is required te find the two velocities
v and v,, and the discharge Q; use being made of the friction-
head diagrams (Appendix).

Solution.—Bernoulli’s Theorem applied between reservoir
surface A (R is a large reservoir, so that velocity at A is taken
as zero), note being made that the water-barometer height, b,
cancels out (occurring in the expression for pressure head both
at A and at m), gives

112 1 vm? Vm? |
h=§‘2—g+hp+2—0~2—g+2g, R )

ks denoting the loss of head in the 6-in. pipe.

We here note that the whole head & is made up of four
items, viz., three losses of head and the velocity-head in the
free jet (the student will note the corresponding vertical heights
in Fig. 93). In this case hp is not necessarily a large portion
of h, since there must be considerable pressure-head (=DE’ +b)
at E’,the base of the nozzle, to account for the great change
of velocity between E’ and m. We now solve, by the use of
the proper friction-head diagram (containing the 6-in. size of
pipe) by successive assumptions for the smaller velocity, .

First assume v=5 ft. per sec., for which from the diagram
(for 6-in. pipe) we find the friction-head would be at the rate
of 18 ft. per 1000 ft.of length, and hence hr would be 184§ of
18, =28.8 ft. From velocity-head scale (above), since v=5
and v,=9X5=45, we obtain v2/29=0.40 ft. and v,2/2g=
31.4 ft. Hence the two small losses of head would be one half

* See foot-note on p. 706, M. of. E.
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of 0.4, =0.2; and 1/20 of 31.4=1.57 ft. The sum of these is
0.2+28.8+1.57 +31.4, =61.97 ft. (but it should be 90 ft.).
Second Trial.—Take v=6 ft. per sec. v, would be 54 ft.
per sec., and the two velocity-heads would be 0.56 and 45 ft.;
hence the two small losses of head are 0.28 and 3y of 45,
=225 ft. Now 6 ft. per sec. in a 6-in. pipe implies a friction-
head at rate of 25 ft. per 1000 ft. of length and hence hr would
~ be 1§34 of 25, =40 ft. Forming the sum, we have 0.28+40
+2.25+45, =87.53 ft. the difference between which_and

90 ft. is so small that a value of 6.1 ft. per sec. may be con-
sidered as a final solution for v; from which follow the values
55 ft. per sec. for vm and (see diagram) 1.2 cub. ft. per sec.
for the discharge, Q; Ans.

With increasing age the discharge and (v) would of course
gradually diminish unless the pipe were kept clean. If the
entrance E were rounded, a slight increase of Q would result.

These values of the jet velocity vm and discharge @ are the
same as if the nozzle or play-pipe issued from the vertical side
of a large tank containing water the height of whose upper

. oo 12
surface above the point E’ is DE’+-2-§; (proved by applying

Bernoulli’s Theorem to the base of nozzle as up-stream position
and m as down-stream position). In the present case v2+2g
is small, only 0.60 ft. The height DE’ of piezometer at E’ is
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CUB. FT. PER SEC.
Q’= 13 CuB. FT. PER SEC. ~
Q= 20 cus. FT. PER SEC. DIAMETERS =7 ﬁﬁ :

F16. 95.
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easily found to be 48.7 ft.; and the pressure at base of nozzle
is therefore 21 lbs. per sq. in. (see Conversion Scales, Appendix).

120. Variation in Last Problem. (Fig. 93.)—Instead of the
diameter of the pipe being given, let us inquire what should be
its value in order that 80 ft. of the total 90 ft. head may be
available to produce the jet velocity vs.; that is, that only
10 ft. of the 90 ft. may be lost in friction-head and the two
entrance losses of head; the remainder, 80 ft., being =v,2/2g.
In this case v, itself would be 71.8 ft. per sec.

In the nozzle the loss of head would be 1/20 of 80 ft.; i.e.,
4 ft.; while that at E may be neglected. This leaves 10—4,
=6 ft., for hp, which is at the rate of (6/1.6=) 3.75 ft. per 1000
ft. of length. Now a jet of 71.8 ft. per sec. velocity and of 2 in.
diameter is discharging @=1.56 cub. ft. per sec. [obtained by
multiplying 71.8 by the area (sq. ft.) of a 2-in. circle; or, more
simply, by the friction-head diagram (one quarter of 71.8 is
18 (say), which is within the limits of diagram and for a 2-in.
area gives Q=0.39, which multiplied by 4=1.56)].

With the 3.75 and @=1.56, we find from diagram that a
diameter of 9.9 inches (say 10 in.) must be given to the pipe
in Fig. 93. Ans.

This change of design calls for a greater consumption of
water (1.56 instead of 1.20 cub. ft. per sec.), but the “ kinetic
power ”’ of the “free jet’’ at m (that is, the kinetic energy of

2
the mass flowing per sec. in jet), viz., % -v?'", ill be more
than doubled. It will be 7800 ft.-lbs. per sec. instead of 3513;
ie, 142 H.P., instead of 6.4.

As another variation (for the student to work out): Given
Q, h, d, and [, determine necessary values for v, and d, to
realize this discharge. Also find the H.P. of jet and the power
to be expected from a Pelton wheel of 80 per cent. efficiency.

121, Main Pipe and Two Branches. (Fig. 94.)—A steady flow
of water is to take place from reservoir R to two lower reservoirs,
R’ and R”, through a main pipe EP and two branch pipes,
JN’ and JN”, each of which discharges under water (at N’
and N respectively). No nozzles are provided, so that the ve-
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locity of each submerged jet isequal to that'in the branch pipe
itself, and the hydraulic grade-line for each branch is a straight
line from the junction J to points L’ and L” in the receiving-
reservoirs vertically over the discharging ends of the pipes.
The flow having adjusted itself to a “steady’” condition, the
flow in EP of Q cub. ft. per sec. will be equal to the sum of
those, ' and @”, in the two branches. If a piezometer were
inserted just above the junction, J, the summit of the station-
ary water column therein would be at some point C in the
tube, and the straight line BC is the hydraulic grade-line for
EP. Similarly YL’ would be the (straight), hydraulic grade-
line for pipe JR’, D’ being vertically over a point in the
pipe where the loss of head due to skin friction proper begins;
there being a local loss (like that for an elbow) at the junc-
tion, and also a change of velocity, for those stream-lines
which enter this branch. A corresponding statement may
be made for the other branch.

Let v, v/, and v’ be the velocities of steady flow in the three
pipes, respectively; and their lengths and diameters, and the
elevations of reservoirs, be as indicated in Fig. 94. The friction-
head hr for pipe EP is the vertical projection of its hydraulic
grade-line. Similarly h#’ nad hg” are the friction-heads of
the branch pipes. As to the other vertical “drops’ between
A and I/, and A and L”, we have (from Bernoulli’s Theorem)

i AN A
A to B= cg—+2g, CtoD'= C [2g Zg
' ” /12 ’U"2 1),2
and C to D'= (o [—25—2—9]

V2
in which CE‘ and (" are losses of head due to change of

section (if abrupt) or elbow resistance.

Now in most cases in practice the velocities in the pipes of
a system are rarely over 10 ft. per second, and the pipes are
very long (as in next paragraph); so that in treating a problem
like the present (one where the @’s are required if the diameters
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are given, or vice versa), it is sufficiently accurate to neglect the
small “drops” AB, CD’, and CD” in the hydraulic grade-lines
and consider that the whole drop from surface of water in R to
that in R’ is equal to the sum of the two friction-heads hr and
h#'; and similarly that the drop from R to R”=hr+hs".
(However, this would not be justified if there were nozzles at
N’ and N’; see Fig. 93.)

Problems of this kind are best solved by trial, use being
made of friction-head diagrams. Other modes of solution are
very tedious and intricate. '

122. Numerical Problems. (III) Main Pipe and Two
" Branches.—For the system of pipes in Fig. 95 (same as in Fig.
94, but with numerical data), such diameters are to be determined
for the three pipes respectively that the discharge shall be
Q=33 cub. ft. per sec. through the main pipe, of which (Q'=)
13 is to pass to reservoir R’ and (Q”’=) 20 to R”. Elevations
and lengths are as printed in Fig. 95. (Clean cast-iron pipes.)

We are at liberty to assume one of the diameters; or the
friction-head, hr, of the main pipe; say the latter. Take hp=40
ft. A steady flow is to take place in pipe EJ of 33 cub. ft. per
sec. and the friction-head is to be at rate of (40+-30=) 1.33 ft.
per 1000 ft. of length. In the diagram of friction-heads for
large pipe (see Appendix) we note that the vertical line for 1.33
(interpolating) intersects the horiz. line for Q=33 in a point
corresponding to a diameter of 38 in. (among the lines sloping
up to the right), while among the other inclined lines (sloping
down to the right) we find that with this discharge the velocity
of the water in this 38-in. pipe would be 4.1 ft. per sec. (which
is not extreme). Deducting the assumed hr (40 ft.) from
the altitude 60 ft., we find the corresponding value of hz' to
be 20 ft.; i.e., at the rate of (20+10=) 2 ft. per 1000 ft. length
of pipe. From same diagram we note that the intersection of
the vertical 2 with the horizontal for Q=13 is a point calling
for a 25-in. pipe; in which with this value of @ (13) the velocity
of the water would be 3.8 ft. per sec. (a permissible value).

Similarly, deducting the hg (40 ft.) from the 85 ft. altitude
we obtain for the hp” of the other branch pipe 45 ft.; which is
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at the rate of (45+15=) 3 ft. friction-head per 1000 ft. of
length; for which, with Q=20, the diagram gives a diameter
of 27.5 in. for pipe JN” with a velocity=>5 ft. per sec.

If hr had been assumed somewhat > than 40 ft., a smaller
diameter would have resulted for the main pipe, EJ, with a
higher velocity in it than before; but larger diameters and
smaller velocities in the two branch pipes. Results should be
sought involving the least cost, with sufficient velocities (above
2 ft. per sec.) to prevent the deposit of silt.

4" 123. Variation from Foregoing Problem.—1In the above
example the diameters were the quantities sought; but if the
diameters were given and the rates of flow that would occur in
the respective pipes were to be determined, proceed thus:
Assume a trial value for Q and find from diagram the friction-
head per 1000 ft. length of pipe of given diameter d, thence the
value of hp for actual leng h of EJ. Values of hp’ and hg”
corresponding to hp are now noted and corresponding values of
" and Q" found from the diagram for respective diameters d’
and d’. The sum Q'+ Q" should be equal to Q. If such is not
the case as a result of the first trial, assume a new value for Q;
and so on, until the necessary equality is obtained.

In the above it is supposed that water flows into R’ and R”,
and out of R; but if R’ is at a sufficient elevation, or if pipe EJ
is small in diameter, water may flow out of R’, as well as out
of R. In such a case the summit C' would be lower than the
surface in R/, and Q+Q ' =Q".

Similar principles and methods apply to any system or
network of pipes. '

124. Numerical Problems. (IV) Supply-pipe for Turbine.
Loss of Head.—In previous problems of this chapter examples
have been treated in which the water reaches the atmosphere
at the lower level without having given up energy for any
useful purpose, some or all of its energy having been expended
in fluid friction. Let us now consider the case of a turbine
supplied with water through a supply-pipe of riveted steel,
2000 ft. in length. See Fig. 96. The suction-head (for the
short draft-tube) is 10 ft.; whole head, 80 ft. The consump-
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tion of water in steady flow is limited to 20 cub. ft. per sec.
How much of the total head of 80 ft. will be lost in the supply-
pipe, and correspondingly how much power lost in fluid fric-
tion?

Solution.—We find from the friction-head diagram (in
Appendix) that a flow at rate of 20 cub. ft. per sec. in a pipe of
24 in. diameter implies a mean velocity, v, of 6.4 ft. per sec.;
and also, if the pipe is of clean cast iron, a friction-head of
5.8 ft. per 1000 {t. length; that is, of 11.6 ft. for 2000 ft. length.
Multiplying this 11.6 by }3§ for riveted steel pipe (see § 115),
we obtain 15.8 ft. as the friction-head from E to K. This
15.8 ft. is the “drop,” FD, in the hydraulic grade-line, while
CF, =12+ 29)(140.5), =1.02 ft. Hence the open piezometer
height DK, at K (taking CK as 70 ft.), is 70 —(15.8+1.02),
=53.18 ft.; and the vertical distance from summit D to tail-
surface T is 63.18 ft. In computing the efficiency 7, of the
turbine, (in a test,) from the expression 5= R’v’ + Qrh, we should

Fic. 96.

write for h the value 63.18 + (v?2+2g); i.e., 63.86 ft., and not
80 ft.; since the 24-in. pipe is not a part of the turbine. Again,
referring to Fig. 45, the , of that figure would be represented
by DK+ (v?>+ 2g), i.e., by 53.86 ft., in the present case; and
hn by —10 ft.; that is, the h, =hy—h,, of Fig. 45 will be (as
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already stated) 53.86—(—10), =63.86 {t., for the purposes of
the present problem.

If, then, a diameter of 24 in. be adopted for the 2000 ft.
supply-pipe, the loss of head thereby occasioned is about 16 ft.
(=h2) and the loss of power is Qrhs, =20X62.5X16, =20,000
ft.-lbs. per sec.; or 36.4 H.P.

As the loss of head of 16 ft., in the supply-pipe of 24 in.
diameter, is about one-fifth of the total head (80 ft.) of the
mill-site, it will be instructive to note the great reduction in
this loss of head as due to an increase in the diameter of the
supply-pipe from 2 ft. to 3 ft., Q remaining as before (20 cub.
ft. per sec.). For a 36-in. pipe, from the friction-head diagram
for clean pipes we find hz=0.73 ft. for 1000 ft. length, and hence
(0.73%X2=) 1.46 ft. for the actual 2000 ft. length. If 1.46 be
multiplied by 13§, as before €or riveted steel pipe), the result
is a loss of head of only 2 ft.; instead of the 16 ft. when the
diameter was 24 inches. However, in an actual case in prac-
tice, the annual interest on the extra cost of the 36-in. pipe
might be greater than the annual income from sale of power
due to the head so saved (14 ft.). Commerical considerations
of this nature are of great importance in situations where long
supply-pipes are needed to develop a water-power.

124a. Power Lost in a Supply-pipe.—In general, in this con-
nection, it is to be noted that if in the expression for the friction-

head in a long pipe [eq. (1), § 115], viz., hp= él ng’ there be
2
substituted for v its equivalent Q-+ ( Z ) we have
32f1 @,
F= "5 n\2g d5 , . . . . . . . (6)

from which it is seen that if the coefficient f be considered con-
stant (asa rough approximation), the friction-head is inversely
proportional to the fifth power of the diameter d, for a con-
stant Q. Evidently, then, an increase in the diameter produces
a relatively large decrease in the friction-head, as has just
been illustrated.
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Again, as to the power lost in a supply-pipe, Lg ft.-lbs.
per sec., we have

32fl @3 ,
LF=QThF=ngT"d—5, N ()

on which the statement may be based, as approximately true,
that the power lost in a supply-pipe is directly proportional
to the cube of the volume of flow (Q cub. ft. per sec.) and in-
versely to the fiftth power of the diameter (d) of pipe. For
instance, doubling the discharge, without change in length or
diameter, would involve about eight times as much loss of power
in the supply-pipe.

124b. Note.—If M, in Fig. 96, were a centrifugal pump
(instead of a turbine) requiring a power Pv’ to drive it, pumping
20 cub. ft. of water per sec. from T to A, the summit D’ of the
piezometer column’at K would stand at a height I’K above
K equal to CK +hp; or for a 24-in. pipe 70+15.8=85.8 ft.;
and therefore 15.8 ft. above C. See §§ 12 and 13. The hy-
draulic grade-line would then be a straight line from D’ to a
point in A vertically above E.

125. Water-hammer in Pipes. Unsteady Flow.—When the
water supplying a turbine is conducted through a very long
pipe, flowing with some velocity », a more or less sudden
closing of the wheel-gates may cause high bursting pressures
within the pipe, unless relief-valves are provided, or a stand-
pipe communicating with the supply-pipe just up-stream from
the wheel-gates. Without such provision the arresting of the
motion of the large mass of water in the pipe creates a great
increase of pressure of the water against the walls of the pipe,
sufficient in some cases to rupture it. The most extreme
instance of this kind would be occasioned by the instantaneous
closing of a valve-gate in a pipe in which water is flowing.
This will now be investigated. If the pipe does not move
lengthwise, the original kinetic energy of the water will ex-
haust itself in compressing the water itself and in distending
the walls of the pipe. In our first treatment the walls of the
pipe will be considered as inextensible; that is, their disten-
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sion will be neglected. The maximum (unit) fluid pressure
to be determined, as due to the arrest of the motion, will be
that over and above the pressure already existing before the
interruption of the condition of steady flow, and may be called
the ‘“ excess-pressure.”

126. Water-hammer in a Pipe. Distension of Pipe Neg-
lected.—We shall at first disregard the distension of the pipe
walls due to increase of internal pressure. As regards the com-
pressibility of water it is known from physics that water has
only one kind of modulus of elasticity, viz., that of change of
volume (or ‘“Bulk-modulus”), which may be called E. If a
mass of water, of original volume V, is by compression from all
sides reduced in volume by an amount 4V, the fluid pressure
so far induced being p lbs. per sq. in., then E is defined as the
quotient p-+relative change of volume, i.e.,

__p 7V
E_AV+V_AV' P €2

For pressures below p=1000 lbs. per sq. in. (and at ordinary
temperatures) E may be taken as 294,000 lbs. per sq. in. (For
very high pressures, see Engineering News, Oct. 4th, 1900, p.
236.)

In Fig. 97 we have a horizontal pipe of indefinite extent in
which at first water is flowing (from left to right) with a con-
stant velocity of ¢ ft. per second, the valve-gate G being open.
The pipe is non-distensible. If now the gate G is instantaneously
closed, passing into position GC’, the vertical laminz of water
on the left of the gate crowd up against it, and at the end of
a short time, df seconds, all the lamine up to some position
BB, a distance ds’ from C, have come to rest, with reduced
volume and under some pressure p (excess pressure) whose
value we wish to determine. At the beginning of this short
time dt there were certain lamin® in the position AA’
which at the end of the time dt have just reached position BB,
having traveled a distance AB, =ds, without reduction of
volume and with unchecked velocity ¢; so that c=ds-=+dt.
That is, a ‘“ wave of compression’ travels from C to B in time
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dt, and hence the velocity of the ‘“wave front,” or of “wave
propagation,” is ds’ + dt, which may be called C, or the velocity
of sound in water.

Therefore, in a time d¢ the prism of water AA’C'C, whose
original volume was V =F(ds+ds’), (where F is the sectional
area of the pipe,) has had its velocity changed (different laminse

G

PIPE GATE

successively) from ¢ to zero and has undergone a change of
volume of 4V =Fds. Each of the vertical lamine composing
this prism has encountered a retarding force increasing regularly
from zero up to its final maximum, P=pF, and we may for
simplicity assume that the value of this final maximum pressure
is the same as if the prism in question had remained rigid; that
is, had remained of unaltered length AC while describing
the distance ds in being brought to rest; its retardation being
brought about by an imponderable spring (say), the compressive
force in which increases progressively in proportion to the
amount of shortening of the spring, from zero to P.

Now for a uniformly retarded motion we have from eq. (3),
p. 54, of M. of E., when the initial velocity is ¢ and the final
is zero, 02 —c2 =2 Xdistance X acceleration. The motion of the
prism in the present case is mot uniformly retarded; that is,
the (negative) acceleration is not constant; but we may use
the relation just quoted if we substitute the average accelera-
tion, which is one-half of its final value, viz., —4(pF +mass),
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=—3pF=+[F(ds+ds’)7+g]. The result of such substitution is
2=pg-ds=+ (ds+ds)7r; N ()
Lut since ¢=ds- dt, this may be written
p-g-dt=(ds+ds)yc. . . . . . . (9
Also, from deﬁnition of E (see eq. (8)),
g PF(s+ds) pPlds+ds)

Fas 0 O s . . (10

Dividing (9) by (10) we have pP2= T, N ¢ §))
Er

or p=L\/—gI, B ¢ 2)]

for the value of the “excess pressure.” It is seen to be pro-
portional to the original velocity, ¢, of the water in the pipe.
Incidentally, we may now determine the velocity of sound
in water, C; viz., by multiplying eq. (9) by (10), whence
Egds-dt=(ds+ds)?yc. . . . . . (13
Now ds is usually so small compared with ds’ that we may

neglect it when added to the latter, and thus obtain Egds-dt=
(ds")2yc. But ds+dt=c, and ds’+ dt=C; therefore, finally,

C=\@........(14)

With E= 294,000 lbs. per sq. in., g= 32.2 (ft. and sec.), and
7r=62.5 lbs. per cub. ft., this gives C'=4670 ft. per sec.

Eq. (12) may be written in this form (taking E=294,000
lbs. per sq. in. and y=62.5 lbs. per cub. ft.):

p (in lbs. per sq. in.) =63 X[c in ft. per sec.]. . (14a)

12%7. Water-hammer in a Pipe, Distension of Pipe Considered.
(See Fig. 98.)—In this case, the water in the pipe being originally
in motion in steady flow from left to right with velocity ¢, let
the gate G be suddenly closed, into position GH’; and let
BB’ be the position of the “ wave front” at the end of dt seconds
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after the closure. The compressed prism of water, which
originally occupied the position and space AA’C’C, its volume
being then V=F(ds+ds’), is now found to occupy the space
BB’H’H (dotted sides), the pipe having been distended, and
its radius having increased from a value r to a new value,

Fia. 98.

r+4r, (see the end-view on the right, where the thick outline
shows the original size of the pipe.) The change (decrease) of
volume of this prism is evidently 4V =F -ds —2zr-4r-ds’, where
F is sectional area of pipe, =nr2, and hence [see eq. (8)],

g _PFds+ds)

= Fds—2mr-dr-d5" (15

By the same reasoning as in the previous paragraph we may
repeat eq. (9), viz.,

p-g-dt=(ds+ds)rc. . . . . . (16)

The unit pressure being p at this instant, acting also as a
bursting pressure radially outward on the inner surface of the
pipe-wall, between B and H, the simultaneous tensile stress (or
“hoop-tension ”’) in the pipe-wall, p’ lbs. per sq. in., will have
a value of p'=rp=+t/, where ¢’ is the thickness of the pipe-wall
{see p. 537, M. of E., eq. (2)]. Now if E’ is the modulus of
elasticity (linear; Young’s modulus) of the metal of which
the pipe is made, and 2 is the increase of length of the circum-
ference of the pipe due to stress p’, we have (see p. 203, M.
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of E.), by definition,
E'=p' <+ (A+2rr), or E'=(rp2zr)-+(it).
But, from proportion, A:2zr::dr:r, or A=2x-4r; hence

_p
dr=spr- - - o ... aan

If this be substituted in (15) and F replaced by =r2, we
finally obtain [see also (16)], the relation

ds @ p_1rY9
@ T @rE By v v 0 - 18

But if in (16) we neglect ds when added to ds’, writing C
for ds’+dt, we obtain

p=—- B ¢ )]

which may be substituted in (18) and a solution made for C
(note being made that ds+dt=c and that ds’ +dt=C), whence

EEY
Cc= \IT EaH @

as the (diminished) velocity of sound * along the water in the
pipe now that the distension of the latter is brought into play;
and therefore [see (19)]

p=c(\jg(tf,f%) N 3 )

is the ““excess pressure "’ tending to burst the pipe.
(N.B. These same results could also be obtained by putting
the original kinetic energy of the prism AA’C’C equal to the work

of compressing itself and of distending the pipe-wall; see § 196,

M. of E)

128. Joukovsky’s Experiments on Water-hammer.— That
formule (20) and (21) are practically true has been demon-
strated by Prof. Joukovsky in experiments conducted at

* First proved by Korteweg in 1878, See also Mr. J. P. Frizell’'s book
on “Water Power,” New York, J. Wiley & Sons, 1901.
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Moscow, Russia, in 1897-98. These experiments * were made
with horizontal pipes of cast iron of four different lengths,
viz., 2494, 1050, 1066, and 7007 ft.; their diameters being 2,
4, 6, and 24 inches, respectively.

It was found that so long as the time of closing the valve
was less than that required for the wave of compression, or
sound wave, to make a ‘“round trip” from the valve to the
reservoir from which the pipe issued and back to the valve,
the effect was practically the same as if the closure had been
instantanoeus. The wave being reflected down the pipe from
the water in the reservoir, the time for the “round trip,” if
I denote the length of the pipe, is t=2//C. It was found
that when the time, ¢”, of closure was longer than ¢,, the excess
pressure produced, p”, was less, and in the same proportion
as t, was less than ¢”; that is, that p”:p::t.:t".

On account of the elasticity of the water its condition of
compression is only temporary, being followed, during the
“recoil,” as it may be called, by a period of ““rarefaction”” or
of pressure below the original or normal pressure; thus there

_occur at the gate successive pulsations of pressure a complete
cycle of which is equal to the time of two “ round trips.” These
pulsations of pressure diminish gradually in intensity through
friction.

In the case of a pipe of smaller diameter connected with the
main pipe and terminating in a ‘“‘dead end ” or valve per-
manently closed, a much greater excess pressure is produced
in the smaller pipe—about double that in the main pipe.

Some practical conclusions reached as the result of these
experiments are quoted (see foot-note below): ‘The simp-
lest method of protecting water-pipes from water-hammer
is found in the use of slow-closing gates. The duration of
closure should be proportional to the length of the pipe-line.
Air-chambers of adequate size placed near the valves and
gates eliminate almost entirely the hydraulic shock, and do not
allow the pressure wave to pass through them; but they must

* A good résumé of these experiments was published in the Proceedings
for 1904 of the Amer. Water-works Assoc., p. 335.

14
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be very large and it is difficult to keep them supplied with air.
Safety-valves allow to pass through them pressure waves of
only such intensity as corresponds to the elasticity of the springs
of the safety-valves.”

129. Time of Closure Longer than {.—When the time of
closure is very much longer than that, ¢,, for the ‘ round trip,”
the rate at which the opening of the valve-gate is closed up
would seem to have an important bearing on the rise of pres-
sure produced. Theoretical investigations along this line have
been made by Mr. B. F. Latting, C.E., and the present writer;
and a few experiments were also made by Mr. Latting, the
results of which were fairly confirmatory of theory. See the
Engineering Record for Feb. 25, 1905, p. 214, or Engineering
of March 17, 1905, p. 363; also Transac. Assoc. Civ. Engineers
of Cornell University, for 1898, p. 31.

130. Water-hammer. Numerical Examples.—(I) If the orig-
inal velocity of the water in a 2-in. pipe is 4 ft. per sec.
and a valve-gate is closed instantaneously, what excess pressure
is produced?

This pipe being small in diameter, eq. (14a) may be used,
from which we have p=63X4=252 lbs. per sq. inch.

If the length of the 2-in. pipe is 1000 ft. the same pres-
sure would be produced so long as the time, ¢, of closing the
valve was less than ¢,=2X1000+4670,=0.428 sec. If the
time of closing were longer than 0.428 sec., the excess
pressure (p’") would be less in accordance, with the relation
p// — (tr —I-t”) P.

If the 2-in. pipe were only 200 ft. long the full water-hammer
of p=63x4, or 252 lbs. per sq. in., would not be produced,
unless the time ¢ were less than 0.085 sec.

(II) A riveted steel pipe is 5 ft. in diameter, the thickness
of pipe-wall being } inch. The water within it has origi-
nally a velocity of 4 ft. per sec. What is the full excess
pressure of water-hammer if E’ be taken as 30,000,000 lbs. per
sq. in.?

We now substitute in eq. (21) and obtain p=137 lbs. per
sq. in. Also from eq. (19) we have for the velocity of the
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compression wave

_ 137X144X32.2

C= 25625 =2552 ft. per sec.

In case the length of the pipe is 7000 ft. the full value of p,
=137 lbs. per sq. in., would not be produced unless the time
of closing were less than ¢, which=2X7000-2552=5.48 sec.;
and similarly for other values of the length.

The “ hoop-tension ” in the wall of the pipe, due to the excess
pressure p, would be p”’ =rp + (thickness), i.e.

p=30X137 +1=16,440 lbs. per sq. in.

To this would have to be added the hoop-stress due to original
fluid pressure; and the weakening of plates due to riveting
would have to be considered. Evidently the total hoop-stress
would be too great for safety.

131. Prevention of Water-hammer with Turbines.—The
prevention of much increase of pressure at the turbine end of a
long penstock is not only desirable for the safety of the pen-
stock itself, but also in some cases absolutely necessary for the
proper regulation of the motor.

For instance, when the resistance or “load” on the turbine
diminishes, and when consequently by the action of the govern-
ing apparatus the wheel-gates begin to close, in order that by the
diminution of the rate @ (cub. ft. per sec.) of water used by
the wheel the working force exerted on the wheel may be re-
duced, so great a rise of pressure might be produced just outside
the gates as to bring about an increase, instead of a decrease, in
the working force acting on the wheel; and thus produce an
effect just the contrary of that intended. Provision therefore
is often made for the escape of some of the water through a
side outlet or ‘“by-pass” leading to the atmosphere; which is
only opened, and that automatically, whenever the pressure
increases slightly above its normal value. The valve closing
this outlet is called a “relief valve.” (See p. 422 of the Engi-
neering News of Nov. 1904, where a valve disc 23 in. in diameter
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is described, with its appurtenances; made by the Lombard
Governor Co.). )

Another method of preventing any material inciease of
pressure in the penstock when the turbine gate is being lowered -
is by the use of a stand-pipe of large diameter communicating
with a side opening in the penstock near the wheel. When the
consumption of water is normal and the flow steady the water
in this pipe is at rest and stands at a height reaching to the
hydraulic grade-line (see DK in Fig. 96). When the wheel-gate
closes more or less, a part of the flow from the penstock passes
into the stand-pipe and spills over its upper edge; and the rise
of pressure near the wheel-gate is not excessive. Conversely,
when the wheel-gates open beyond the normal position the
extra flow desired is at first furnished by the water in the stand-
pipe and the pressure just above the wheel-gates does not fall
to too low a value while the water in the penstock is adjusting
itself to a new and greater velocity of steady flow. In Fig.
99 is shown the terminal arrangement of a long penstock in
Fall Creek gorge at Ithaca, N. Y. This penstock, of some 6 ft.
diameter and about 1000 ft. long, supplied two pair of 30-in.
“New American ” turbines on horizontal shafts (see also Fig. 63),
working under 90 ft. head, with draft-tubes as shown. In the
upper part of the figure is seen the lower part (only) of a stand-
pipe or ‘“relief-pipe” 42 in. in diameter and 47 ft. high. Two
air-chambers are also provided, one in each branch of the pen-
stock, just above each wheel-case (containing a pair of turbines,
as shown in the figure).

The use of a stand-pipe is considered the best method of

iating water-hammer, etc., in the case of a turbine supplied
by a long penstock when the head is not too great and freezing
can be prevented. With impulse-wheels supplied through a long
penstock the rate at which water is used by the wheel (Pelton,
for instance) is sometimes varied by the use of a “deflecting-
nozzle” through whose lateral or downward movement, con-
trolled by the governor, more or less of the jet passes on with-
out acting on the buckets. In the Cassell impulse-wheel (see
Engineering News, Dec. 1900, p. 442) the two lobes or halves of
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each bucket are caused to separate more or less by the action of
the governor, and the same object is thus accomplished; a por-
tion of the jet passing between the two parts of the bucket and
without action on it. In this way there is no checking of the
velocity of the water in the supply-pipe and water-hammer
is completely avoided; but of course such a device is not
economical of water.
A 132. Open Channels, or Canals.—Since these are frequently
used to conduct water from a reservoir to a wheel-pit or to
the inlet of a pipe or penstock, for supplying a hydraulic motor,
a few pages will be given to their consideration in the present
work in addition to what is already presented in the author’s
Mechanics of Engineering.

The situation usually presented is that of ‘‘ uniform motion”
in steady flow. By this it is implied that the body of water in
motion is of indefinite length and has the form of a geometric
prism, i.e., the surfaces of the bed, banks, and of the water
itself are parallel,*the mean velocity of the water in any section.
is equal to that in any other and does not change with lapse
of time (see p. 756, M. of E.). The flow will not be of this
character, however, unless the quantities concerned bear a
certain relation to each other. These quantities (as concerned
in the most widely used formula, Kutter’s Formula, for uniform

motion) are the ratio called the “slope” s=%, where h is the fall

of the surface (and also that of the bed) in a length I along the-
channel; the ““ hydraulic radius,” or “ hydraulic mean depth,” R,
=area of cross-section, F, divided by the wetted perimeter;
the mean velocity, v, of flow (about 0.83 of the surface-velocity
in mid-stream); and a “coefficient of roughness,” n, dependent-
on the character of the surface of bed and banks. For uniform.
motion, then, to subsist, the relation which must hold between
these quantities, as expressed in Kutter’'s Formula (which is.
fairly well supported by a wide range of experiments; though
considerable uncertainty must generally prevail in matters of
this kind), is (for the English foot and second as units)

* That is, parallel to an axis.
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41.6+1'i11+0'02281
= 1+<416+0-00281)i V RS; o« 0 (1)
' s /VR.
or, for brevity, v=AV'ERs, . . . . . . . (2

where A stands for “ Kutter’s coefficient”’ in the bracket in (1).

The ordinary scheme of values for n is here appended, viz.:
n=.009 for well-planed timber evenly laid.

.010; plaster in pure cement; glazed surfaces in good order.

.011; plaster in cement with one-third sand; iron and
cement pipes in good order and well laid.

.012; unplaned timber, evenly laid and continuous.

.013; ashlar masonry and well laid brickwork; also the
above categories when not in good condition nor
well laid.

.015; “canvas lining on frames”; brickwork of rough sur-
face; foul iron pipes; badly jointed cement pipes.

.017; rubble in plaster or cement in good order; inferior
brickwork; tuberculated iron pipes; very fine and
rammed gravel.

.020; canals in very firm gravel; rubble in inferior condi-
tion; earth of even surface.

.025; canals and rivers in perfect order and regimen and
perfectly free from stones and weeds.

.030; canals and rivers in earth in moderately good order and
regimen, having stones and weeds occasionally.

.035; canals and rivers in bad order and regimen, overgrown
with vegetation, and strewn with stones and
detritus.

The value of the coefficient A is most readily found from the
diagrams in the Appendix of this book. A separate diagram
has been constructed for each of the above values of n (and also
for n=.040). For example, for a hydraulic radius of 2 ft. and
a slope of s=0.0002 which is 0.2 ft. per thousand we find that
when n=.012 (unplaned timber) A4 is equal to 139; to be used .
with the English foot and second in eq. (2). The value for A
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for a slope of 10 ft. per thousand will also hold for all higher
slopes with sufficient accuracy (as is also evident from the
diagrams) *

The student should guard against the error of supposing that
eq. (1) or (2) would hold for measurements made at a single
cross-section of a body of water flowing with steady flow in an
open channel. The depth, area, and shape of cross-section,
and character of surface, etc., must be the same, respectively,
at all sections of a fairly long reach of the channel, to constitute
a case of uniform motion to which eq. (1) and (2) apply. Prob-
lems involving non-uniform, or variable, motion (with steady
flow) where the surface is not parallel to the bed (in longitudinal
profile) will be considered later.

132a. Coefficient of Fluid Friction for Open Channels.—If
we go back to the theoretical basis of the form of the relation in
eq. (2) (see pp. 757 and 758, M. of E.), we find the formula for
uniform motion to be

v=\/%q\/fs;.......(3)

involving f, the “coefficient of fluid friction,” corresponding to
that for flow in pipes. In other words, Kutter’s coefficient, 4,
may be written as A =+/2g +f, or
2
=35« v o @
Of course, while f is an abstract number, the same in value
whatever units of measurement and time are selected, A is not.
Since problems are to be treated in which the flow is not ‘“ uni-
form” (although ‘‘steady”’), we shall need the quantity f; and
this may conveniently be found by first finding A4 from a diagram,
as if the case were one of uniform motion, and then determining
f from eq. (4). Or, vice versa, if preferable, we may replace the
f of aformula applying to a non-uniform steady flow (depths
different along the length at different points, e.g) by its
* A book of Diagrams of Mean Velocity of Water in Open Channels;
Uniform Motion, by the present writer (New York, J. Wiley & Sons, 1902),

obviates the necessity of numerical substitution in the use of Kutter’s for-
mula (eq. (1) above) fur all practical purposes.
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equivalent in terms of A; thus f=2¢+A2; but if values of A
are used from the diagrams (Appendix), the foot and second
must be used throughout the whole formula in which A appears.

133. Forms of Section. Open Channels.—The forms of
section most generally employed for open channels, for water-
power, or for irrigation are the semicircle, or other segment
of a circle; the rectangle; and the trapezoid with horizontal
base; occasionally the horseshoe, if the channel is roofed over
or is in tunnel.

For the semicircular section running full, or for the lower
half of any regular polygon, also running full, the hydraulic
radius R is equal to half the radius of the inscribed circle. It
is also worth noting that any such half regular polygon has a
minimum wetted perimeter for a given area and consequently
is of the most advantageous form from a theoretical point of
view; i.e., to deliver a maximum quantity of water per sec.,
Q, for a given slope of bed, given area of water prism, and
given number of sides for the polygon.

Tt is also to be noted that of all trapezoidal sections running
full and having a common side slope, or angle 8, (see Fig. 100,)
of the bank, that one is of the most advantageous form whose
three sides forming the wetted perimeter are tangent to the
semicircle having a radius CE equal to the depth A and with
its diameter in the surface of the water; and its hydraulic
radius, R, is equal to the half-depth.

According to Prof. Bovey (Hydraulics, 2nd ed., p- 231) the
angle 6 should not be made greater than the values given below
for different characters of 0OA c BD
bank, respectively: X Ly
with retaining walls 63° 36
with stiff earthen

sides, faced.. ... 45°
with stiff earthen \

sides, unfaced. ..33° 41’
with sides in light

or sandy soil. . ..26° 34’
To avoid erosion velocities in some soils may have to be limited

Fia. 100.
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to 2 ft. per second or under; with timber or rock for bottom
and sides, however, v may be allowed to reach values of 6
to 10 ft. per second.

134. Numerical Example. Open Channel Supplying Wheel-
pit.—An open channel with bottom and sides of ‘average
rubble ” masonry and whose depth 4 is to be one-half of its
width is to conduct a water-supply of @ =120 cub. ft. per sec.
with ‘“uniform motion,” with a fall of only 3 ft. in its length
of 1200 ft. Compute a proper value for the depth h. See
Fig. 101. A is the reservoir and C the wheel-pit.

Solution.—The sectional area being 2h2 and the wetted
perimeter 4h, the hydraulic radius is R=2h2+4h=h +2. The
coefficient of roughness, n, is 0.017 (for ‘““average rubble ”)

R = e,

‘Q = 120 'CUB. FT. PER SEC™®
Fio. 101.

~ (see §132); and the slope is 3’ +1200'=0.0025, i.e., 2.5 ft.

per thousand; but as the value of R is as yet unknown, it is

impossible to use the diagram directly for finding the value

of Kutter’s coefficient A.

Since the values of A, however, range between 65 and
150 for ordinary cases, a value of A=100 may be assumed
for a first trial, and a first approximate value of h deter-
mined, as follows: With A=100 (for the foot and sec.) and
v=0Q+F=120-+2h2, we have from eq. (2), § 132,

120 h % 0.0025
'éh—2=100J'—2—", r h5=288;

i.e., h=3.10 ft., as a first approximation.
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The corresponding R is h+2=1.55 for which and the
given slope of 2.5 per thousand we find in the diagram for
n=0.017 a value of 96 for A. With this more exact value of
A we again use eq. (2), obtaining

120 h X0.0025
oE =96JT’ or h=3.155 ft.,

as a second approximation; for which R would be 1.57 ft.
Similarly, from this R and the diagram we find 4 =94, with
which (for a third approximation) the value of h=3.2 ft. is
found; which is sufficiently close.

Owing to the uncertainty generally involved in the choice
of a “ coefficient of roughness,” n, in problems of this class,
results obtained must be looked upon as only approximate.
They may be as much as five per cent. in error.

(The solution of this problem would be much shortened by
the use of the diagrams mentioned in the foot-note on p. 216.
These diagrams deal with », R, and s; and not directly with
the coefficient A.)

A practical matter to be noted in the problem now treated
is the fact that where the water passes from the reservoir A
into the entrance of an open channel, a drop of the surface
will occur of an amount equal to v?+2g; which in the present
case is not small.

Since v=120-2h?=5.86 ft. per sec., we have for v2+2g,
or corresponding velocity-head, about 0.54 ft.; (see page
Conversion Scales, in the Appendix). This drop should be
allowed for in arranging the position of the bottom of the
channel, and in consequence of it the bottom of the channel
at NO should be placed 3'.2+0.54=3.74 ft. below the sur-
face of the (still) water in reservoir A; while the bottom at
B should be 3 ft. lower yet, or 6.74 ft. below the surface of
the water in A.

135. Height and Amplitude of Backwater*—If an obstruc-
tion such as a weir or dam, for water-power purposes or otherwise,
is thrown across the bed of a stream or channel of indefinite

* See Engineering Record, July 1892, p. 91.
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length and of regular form, in which originally there was a
“steady flow” with “uniform motion”; when the flow again
becomes steady, over the weir, the depth of water just above the
weir is greater than before and the increase of depth at that
point is called the height of backwater. Also, the longitudinal
profile of the water surface above the weir is more or less curved,
the depth being found in general to be less and less as we proceed
up-stream. The greatest distance up-stream from the weir at
which any increase of depth is perceptible is called the * ampli-
tude of backwater.” A knowledge of this distance in the case of
a proposed weir and also of the increase of depth at any distance,
occasioned by the building of the weir, is often of much impor-
tance; since if another weir were built up-stream from the one
proposed, its available head of water for power purposes might
be affected by the backwater of the first.

After a weir has been built and a steady flow resumed, the
conditions of flow of the stream below the weir are of course -
unchanged. '

135. Height of Backwater for a Weir not Submerged.—
Fig. 102 represents a vertical section of an overfall weir (see pp.

674 and 683, M. of E.) hav-
" ing a sharp-edged sill or
crest, A, higher than the
surface of the tail-water or
original surface of the
stream and with its up-
stream face vertical. We
suppose that the whole dis-
charge Q, cub. ft. per sec.,
of the stream is passing
over the weir and that the
air has free access under the
sheet; and that there are
* no “end-contractions’’; that
is, that the crest terminates in two vertical faces parallel
to the axis of the stream (see p. 686, M. of E.) forming a
‘““channel of approach.” These conditions justify the use of

Fre. 102.
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Bazin’s formula * (p. 688, M. of E.), b being the length of crest
of the weir (and also the width of the channel of approach) and
p the height of the weir above the horizontal bottom of the
channel of approach; see Fig. 102. (The stream itself may,
however, be wider than the weir.) The formula is

e=tu[1+ 222 vt . .. @

in which g has the value
& =0.6075+0.0148 = (ho in feet). . . . . (2)
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