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PREFACE

TO

FIRST EDITION.

I VENTURE to believe that there is still room.for a book on
the subject of Hydraulic Machinery ; this belief being con-
firmed by the fact that students frequently ask me to name a
work on this subject suited to their wants. The difficulty in
naming a work, obtainable at a moderate price, and which
contains really sound information, couched in language that
ordinary students and readers can understand, has led me to
produce the present volume.

In books of this class an attempt is usually made to avoid
using the calculus, or to disguise its use in the language of
so-called elementary mathematics ; this course is not altogether
free from objections, the proofs given being usually long,
difficult, and not too exact.

The present work is ‘the result of a suggestion by Professor
Perry, F.R.S,, whose treatment of the theoretical portions of
the subject I have followed; and I venture to think that,
although in some cases it has seemed necessary to make
use of elementary applications of the calculus, the proofs are
simple, easy, and satisfactory. The student who does not
possess the small amount of knowledge necessary to follow
the reasoning, had better accept the results without proof than
attempt to master those often given.

My many years’ connection with Professor Perry as his
chief assistant, precludes any idea on my part of putting

‘forward a claim to originality in a subject which the Professor
always invests with a peculiar interest. I therefore take this
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opportunity of acknowledging my indebtedness, and returning
my thanks, not only to Professor Perry for his readily given
and generous help, but to all others who have assisted me.
I would mention the name of my colleague, Mr. Robert
Johnston, Whitworth Scholar, as one to whom I am specially
indebted for valuable practical suggestions, and assistance in
the preparation of drawings for the illustrations.

It is impossible to refer by name to all who have, beyond
my hope even, assisted me ; but I would state that to the
Council of the Institution of Civil Engineers, and that of
the Institution of Mechanical Engineers, as well as to the
proprietors and editors of ‘ The Engineer,’ of ‘ Engineering’
and of ‘ Cassier's Magazine’ I am under great obligations for
permission_to reproduce illustrations which have appeared in
their respective journals. The last-mentioned have enhanced
the value of their permission by the loan of some valuable
blocks.

To the heads of engineering firms and private friends I
am also much indebted. Among the former the directors of
Sir W. G. Armstrong & Co, and the directors of Tweddell’s
System, Limited, have my special thanks for generous help.
I hope that all others who have assisted me—and whose
names I have, as far as possible, mentioned throughout the
work—uwill accept this method of publicly returning them
my hearty thanks.

I have tried to produce a work containing sound informa-
tion, not only in regard to the elements of the subject, but also
in respect of good modern examples of hydraulic machinery
of almost every class.

I trust that not only ordinary readers, and students of
engineering, but also those of higher practical attainments
may find that the book will repay their perusal.

ROBERT GORDON BLAINE.

City GUILDS' TECHNICAL INSTITUTE,
FiNsBury, LoNvoN, E.C.



PREFACE

TO

THE SECOND EDITION.

THE exhaustion of a very large first edition, made specially large in
order to admit of the price being reduced, has given an opportunity
for a complete revision of the work, for the re-writing of a consider-
able portion, and for the introduction of much new material.

Of the latter, sections dealing with “ The Stability and, Resist-
ance of Ships,” the *Efficiency of Centrifugal Pumps,” “ Graphic
Methods,” 1n connection with turbine design, “ The Largest Turbine
yet Constructed,” “ Turbines for Low Falls,” “ Hydraulic Governors,”
including a description of the powerful governors now being erected
to control the Ontario Power Company’s 10,000 horse-power units at
Niagara, “ Hydraulic Foundry and Steelworks Cranes, and a Hy-
draulic Gantry,” and “ Hydraulic Gas-Stoking Machinery,” all fully
illustrated, will no doubt be of interest to the student, whether he be
a novice, or one more happily situated as regards experience,

The section on “Hydraulics” has been completely re-written
and greatly extended. New tables have been inserted, recent ex-
periments and deductions introduced, and an interesting, simplified,
graphic solution of Ganguillet and Kutter’s difficult equation, giving
the value of ¢ in the well-known formula v = ¢4/ m , has been given,
so that the reader may for himself construct a drawing rendering
him independent of tables, and embracing the exact conditions with
which he has to deal.

The chapter on ¢ Hydraulic Rams” has also been re-written and
extended to more than twice its original length, most of the typical
forms are described and illustrated, and curves of efficiency are
supplied. Extensive use has, in fact, been made throughout of curves
or “graphs,” as it is often of more importance that a student shall be
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able to form a good idea of the law of variation of two related
quantities, than merely to obtain their numerical values under given
conditions.

The desire to keep the book of a moderate size and price has led
to the condensation of some sections, but the references to original
papers and authorities will enable the reader to prosecute the study
of details in which he may be specially interested. The first edition,
whilst fairly successful here, circulated more widely in the United
States and other countries ; and that in its present form the work
may be still more useful and suggestive is the earnest wish of

THE AUTHOR.
LoONDON : May 1905.
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HYDRAULIC MACHINERY.

- INTRODUCTION.

MACHINERY actuated by water is termed * hydraulic machinery,”
and writers often include under this title machines, such as pumps,
which act oz water. Hydraulic appliances were known and used
from a very early date. Many of these, mainly for raising water, were
employed long before the beginning of the Christian era.

The use of water as a natural source of power has not been as
much resorted to in this country as in many others, owing to our
large supplies of coal, and the fact that a water supply with sufficient
fall is not often available where the power is required. The per-
fection attained in the construction of turbine water wheels, together
with the decline of our coal supply and the perfecting of electrical
methods of transmission, render this source of power one of increasing
importance.

Without referring at length to the history of the development of
hydraulic machinery, it may be mentioned that the invention of the
force pump by Ctesibius about 200 B.C., of the double-acting pump
by La Hire in 1718, the hydraulic ram by Whitehurst in 1772, and
the hydraulic press by Joseph Bramah in 1802, are important epochs.

The suitability of water as a medium for the #ansmission of
power has been fully recognised in recent years, thanks mainly to
the late Lord Armstrong, to whose inventive genius we are indebted
for the initiation of our modern central station hydraulic systems.

The provision of an efficient, moderate-speed, self-governing,
high-pressure water motor for variable powers—now occupying the
attention of inventors—will, no_doubt, greatly extend the use of
hydraulic power. The following pages are written with the hope
of assisting the student to obtain a fairly thorough groundwork of
knowledge in connection with this subject.

B



2 Hydraulic Machinery

L
COMPRESSIBILITY OF WATER.

A FLUID is “ something which flows,” and may range in consistence
from the very viscous pitch which breaks with a glossy fracture, but
which, if left heaped up in a bucket, gradually settles down and
“flows” over the edge of the bucket in festoons, to a very volatile
and highly compressible fluid such as a gas. Fluids of that class,
which are only very slightly compressible, offering very little resist-
ance to change of shape but great resistance to change of volume,
are called “liquids.” Water is a good representative of this class,
and we shall confine our attention mainly to it.

Water is not incompressible, though the old Florentine phllo-
sophers thought it was. They devised an experiment which they
thought would settle the matter. They knew that a sphere contains
a larger volume than any other figure of the same surface area;
hence they took a hollow spherical globe of gold, filled it with water
and sealed it hermetically. The globe was then beaten so as to
make its shape no longer spherical, when small drops of water made
their appearance on the surface of the globe, having oozed through
the gold rather than submit to a diminution in bulk. The philo-
sophers then decided that water was incompressible, which was not
proved by the experiment: all that was proved being the fact that
water resisfs compression very much.

A cast-iron shell filled with water, and fitted with a small screw
which could be screwed into the shell, gave a similar result, water
finding its way to the outer surface of the shell in the form of fine
spray when the pressure became very great, the shell shortly after-
wards falling gently to pieces. This non-dangerous method of
fracture produced by water pressure renders it a favourite medium
for the testing of boilers, etc.

Water is compressible, but only to a very slight extent. Hooke’s
famous law, * Stress is proportional to strain,” enables us to find the
actual compressibility of water.

The law is :—

Change of hydrostatic pressure) _§K x the fractional change
all over the body’s surface ~{ of volume,

where K is the modulus of cubic compressibility. Stated algebraically
it is,
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8v
$p= —K-v—,

the negative sign indicating that the volume diminishes as the pressure
increases. For water K = 300,000 Ibs. per square inch, and if we
take a change of pressure = one atmosphere (14°7 lbs. per square
inch) and an original volume (7)) of 1 cubic inch,

14° 7'= 300,000 8 v’
1

or
Sp=. M1 - T _ __
300,000 20,410 20,000

nearly.

We see, therefore, that the fractional change of volume cor-
responding to a change of pressure of one atmosphere is about

1
20,000

It will not be very far wrong, therefore, to assume that water is
incompressible ; if, as in many problems, the pressure is no longer
changing, the volume, of course, remains constant, and, in any case,
the change of volume is very small.

II
FLUIDS AND FLUID PRESSURE.

FruipIty.

BeFORE studying other hydraulic machines, it may be well, in order
to understand their action fully, to consider some elementary laws
regarding the pressure and flow of fluids.

It is well known that when a substance is kept subjected to
stresses for a long time the strains or deformations produced in the
substance usually increase with time.

This increase is, however, of importance only in the case of
certain substances which have been called plas#ic. Mud, mortar, etc.,
have high degrees of plasticity, but the solids, wax and pitch, also
exhibit this property.

It is probable that if the stresses in the case of sealing wax are
only small enough, the wax will behave like steel, but with even such

B 2
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stresses as are produced by its own weight, it bends more and more
from day to day, nearly the whole of its deformation being a per-
manent set.  If any substance is subjected to sufficiently high stresses
it exhibits plasticity. Thus steel can be drawn through a die to form
pianoforte wire, and the plasticity of lead, copper and other metals
is well known.

PerRrFECT FLUIDS,

A perfect fluid is incapable of resisting—except by its inertia—a
change of shape ; that is, it is impossible for it to exert distorting or
tangential stresses. Such a substance does not actually exist, for all
fluids have viscosity or internal friction, which is defined as a resist-
ance to change of shape depending on the rate at which the change
is effected. The fluids with which engineers have to deal are water
and vapours or gases, and it simplifies some of our calculations to
assume that they have no internal friction.

HYDROSTATICS.

Hydrostatics deals with perfect fluids at rest, and the laws of
hydrostatics are found practically to be applicable to water, air, gas,
etc., when at rest, or moving slowly as in the hydraulic press. The
laws would be applicable to even much more viscous fluids if the
motion were only slow enough. The study of the behaviour of
fluids in motion is not at all simple, and our knowledge of the laws
relating to, say, water in motion is of an elementary kind. Since the
laws of hydrostatics, referring primarily to water at rest, may be
applied in many calculations connected with hydraulic machines, it
may be well to refer briefly to some of the more important of them.

THE NATURE OF FLUID PRESSURE.

An ordinary fluid at rest, or a perfect fluid under any circum-
stances, cannot exert tangential forces; hence the pressure on any
surface—whether it be the boundary of a solid body or an imaginary
interface between two contiguous portions of the fluid—is at every
point perpendicular to the surface. )

The average intensity of pressure on a small surface is measured
by dividing the total force distributed over the suri
the surface. As the area becomes smaller and sm.
the quotient approaches more and more nearly a
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true value of the intensity of pressure at the point. In a fluid atrest
any portion of it is kept at rest by forces acting on its boundary ;
we may therefore regard this portion as a rigid body.

Two IMPORTANT PROPOSITIONS.

At any point in a fluid at rest, the intensity of pressure is the
same on any interface, whatever its direction may be; and if no
external forces, like gravity, act on the mass of the fluid, the pressure
is the same at every point in the fluid. These two propositions may
be proved as follows :—

The resultant of the fluid pressures on any portion of a spherical
surface must, like its components, pass through the centre of the
sphere.  Hence, if we imagine a portion of the fluid—of the shape of
a plano-convex lens (as in Fig. 1) —solidified, the resultant pressure
on the plane side must pass through
the centre of the sphere ; and there-
fore, being perpendicular to the
plane, must pass through the centre
of the plane area. If we take two
concentric circles of nearly the same
radius, the resultant of the pressures
on each must pass through the com-
mon centre, from which it follows Fic. 1. FiG. 2.
that the pressure is uniformly dis-
tributed over the narrow annulus. Now take the intersecting circles
ABE and D E F (Fig. 2), the intensity of pressure at B is the
same as at A, since the points are equidistant from the centre O,
and the intensity of pressure at D is the same as at A, for they are
equidistant from P ; hence the intensity of pressure at D on the lune
A BE D is the same as at B, and so on for other points.

Hence the pressure on any plane area is uniformly distributed
over the area, and the resultant pressure must therefore pass through
the centre of the area or “centre of gravity” of the area.

Next imagine a triangular prism of the fluid, with ends perpen-
dicular to the axis, to become solidified. :

Let the areas of its ends be @, and a,, and of its sides a;, a, and
a, respectively. The forces on the two ends are the only forces in
the direction of the axis of the prism ; these forces must be equal.

Co P18y =Py,
but @ =ay;
- 5 =25
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or the intensity of pressure on any two parallel planes is the same.
We have seen that the resultant of uniformly distributed pressure over
an area acts at the centre of the area.

Now on our prism the forces at right angles to the axis balance,
therefore they are parallel to the sides of a triangle (since the ends of
the prism are parallel, the resultant forces act in one plane), which

P“"-‘ o
Psag
>
Psas
FiG. 4. Fi1G. 5.

triangle has its sides perpendicular respectively to the sides of a right

section of the prism; therefore these figures are similar (Figs. 3,

4 and 5) : hence '
P58 :a5::p0,a,:a,

since the sides of the triangle, Fig. 5, are proportional to the areas
a,, a, and ag respectively, or g = 2,.
Similarly,

D3=p =P

hence the pressure at a point in a fluid is the same in all directions.

PRESSURE DUE TO GRAVITY.

In the foregoing, volumetric forces like gravity were not taken
into account. Consider a liquid acted on on/y by gravity. In
Figs. 6 and 7 are seen a side and front view of a plane area
immersed in the liquid. Let the intensity of pressure at depth y be
p (variable) ; then the pressure on a very small area 8a is p 8 a,
and the whole pressure = 2p8a for the whole area. But from
the rule for finding #, 2 y 8§ a = 7 A, where A is the whole area, § the
depth of the “ centre of gravity ” of the area,

wixyda=wAT,
or
Swday = wA.r.
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But wday = pda, for w 8 ay = pressure on area 8 a.
' 2pda=wAry,
or the pressure on the whole area is found by multiplying #4e weight

of unit volume of the liguid by the area and by the depth of its centre of
gravity below the surface.

A

A= ——————

<

Fic. 6.

Let this total pressure be denoted by R ; then g, A = R, if g, is
the average intensity of pressure, i.e. p, A =wAJ; or p, = w¥,
and w 7 is the pressure on unit area at depth §. Hence the average
intensity of pressure is the intensity of pressure at the * centre of gravity”
or centre of the area.

These rules also hold for areas which are not plane.

CENTRE OF PRESSURE.

To find the centre of pressure, or point of application of the
resultant of all the pressurzs on a plane area, consider gravity alone
acting on an incompressible fluid.

Wesaw that R = w3 % a. Now, if we take two axes of reference
in the plane of the area in question, the axis of y being the line in
which this plane meets the water surface, the axis of x a line in the
plane at right angles to the.first axis; then, since the sum of the
moments of all the elementary forces about either of these axes must
be equal to the moment of their resultant, if the element of area 8 a
has co-ordinates x and y, and if the centre of pressure has co-ordinates
= and , and if the inclination of the plane area to the vertical is 6,
the whole pressure on 8@ is w8 a xcosf, and the moments of this
about the two axes are

8awxcosf.x and Sawxcosh.y,
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so that
R¥=wcos0=8ax?

Ry=wcosf38axy.
The expression 2 8 a x% is the moment of inertia of the area A
about the axis of y, and may be denoted by I ; the expression 3 8axy

is sometimes called the product of inertia about the axes of x and y.
If, then £ and § are the co-ordinates of the centre of area, as

& = i cos 0, we have

%= wcos 1
wxcosf A
. - 1
or x_i‘A’
and ==_E_8ax:y
) FA

We see, then, that the position of the centre of pressure is inde-
pendent of 6—the inclination of the area to the vertical.

Example.—A rectangle inclined at the angle 8 to the vertical has
one side, @ feet, just on the surface, its inclined sides being each
b feet long. Find the position of a single force which will balance
all the pressure on the rectangle.

Here £ = -f, and we find by calculation or from a table that I of

a rectangle about side @ is a:‘f‘, so that
Las
b - 3 = 2 b;
—Xab
2

Kl
]

and
R=wx.cos6.A

= wgcos Gabd
2
= wcosoaé-.
2

R is the force, and it is at right angles to the rectangle at a point
two-thirds of the way downwards, along a central line parallel to the
side 4. It is evident that the centre of pressure is in this line from
symmetry, and it is at a poi
the plane of the rectangle be
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If I, is the moment of inertia of the area in question about a
horizontal line through its centre, we know that

I=1,4+ A(®)?
and
I, = AK?

where K is the radius of gyration of the area about this axis.

_AK+AE K o
Ax x

&l

Hence the distance measured parallel to the axis of x of the centre
2

of pressure from the centre of area is K-T , or, if 4 is the depth of the
X

centre of area, this distance is K? cos § = 4 This distance is zero
when the area is horizontal, and is negligible when % is great com-
pared with K32,

Example—Find the centre of pressure of, and the total pressure
on, a triangular area immersed in water, base 6 feet, height ro feet,

base in the surface and its plane inclined at 60° to the horizontal.
2

The moment of inertia of a triangle of height % about its base is A 4

6
where A is the area of the triangle.
T=1 = __A¥ __4
TXA 6xAx A 2
3

In this case the centre of pressure is 5 feet from the base of the
triangle. The total pressure is

62°4 X 30 X 130- X sin 60° = 62'4 X 10 X 10 X V3
2

= 624 X 50 ¥3 =5403"8 lbs.

Another law of hydrostatics of importance in studying hydraulic
machinery, known as the principle of Archimedes—capable of easy
experimental demonstation—that a dody loses in weight by immersion
in a liguid an amount equal to the weight of the liguid displaced, may
be proved as follows :—

Imagine a portion of the liquid mass to become solidified without
change of weight or volume ; this portion is at rest under the action
of the surface pressures and its own weight, hence the upward re-
sultant of the surface pressures must be equal and opposite to its
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weight, and must act through its centre of gravity. If this mass be
replaced by one exactly the same in size and shape, but of, say, a
heavier material, the surface pressures are the same as before, hence
it, too, is subjected to an upward pressure equal to the weight of that
portion of the liguid distlaced by it.

STABILITY OF FLOATING BODIES.

The term, “ centre of buoyancy,” is given to that point which is
the centre of gravity of the displaced liquid, and it is through this
point that the resultant of the upward or buoyancy forces acts.

When a body floats either wholly or partially immersed, it is
necessary for equilibrium that—(1) the weight of the body shall be
equal to the weight of the liquid displaced by it ; (2) that the centre
of gravity of the whole floating body shall be in the same vertical line
as the centre of buoyancy; and (3) in the case of a body wholly im-
mersed, the centre of gravity must be below, and in the case of a
body partially immersed it must be above, the centre of buoyancy.

Suppose Fig. 8 to represent the cross-section of a ship, G being
her centre of gravity, O the centre of buoyancy when in the vertical
or position of equilibrium. If
the ship heels though a small
angle 6, AB being the old and
EF the new water-line, the new
centre of buoyancy being D, then
if a vertical line be drawn through
D to meet in M the line O G, the
righting couple or moment of sta-
bility is D X GK =D x GM
sin 6, where D is the weight or
displacement of the ship. The
point M is called the metacentre,

wWorD and the comparative stability of

FiG. 8. the ship is proportional to G M

the metacentric height. By stability

is here meant transverse stability, which is the minimum stability of
the ship, and is therefore that of most importance.

Technically a s##ff ship—as regards stability-—is one in which
the righting couple or moment of statical stability is fairly large ; a
crank ship is one which opposes little resistance to inclination or
heeling ; and a stcady ship is one which, when exposed to the action
of waves in a seaway, keeps nearly upright. It frequently happens

WorD




Statical Stability of Ships. IT

that a stiff ship is least steady, whilst crank ships are most steady ina
seaway. Looking at the matter from the metacentric point of view,
the ship is like a pendulum with its point of suspension at M and its
weight all concentrated at G.  If the pendulum be held aside, through
an angle 0 from its mean position, its weight D, acting downwards,
has a tendency to bring the pendulum to its mean position ; this ten-
dency may be expressed as a moment or couple

=D x GMsin 6,

but the comparison, except so far as regards time of oscillation, fails
unless the pendulum and ship are at rest.

Changes in the height of M above G, produce corresponding
changes in the stiffness of the ship. For every position of a ship in
which she can float between lightest load and heaviest, the position of
M, the metacentre, can be found, and its position will be varied by
different distributions of load, or changes in the form of the ship, and
in all probability the lines O G and D K will not intersect in the same
point if the inclinations be much above 15° for ordinary ships. The
following rules are evident :-—

(1) If the centre of gravity of a ship lies bedow the metacentre, she
tends to return to the upright position when displaced, and the equi-
librium is stable.

(2) If it lies abore the metacentre, she tends to move away from
the upright position, and the equilibrium is unstable. And

(3) If it coincides with the metacentre, she tends to move neither
way, and the equilibrium is indifferent.

When the position of the metacentre can be found, it gives an easy
means of determining the line of action of the buoyancy force for
moderate angles of inclination in ships of ordinary form, and avoids
the necessity of finding the exact location of the centre of buoyancy
in an inclined position. In practice, the position of the metacentre is
fixed with reference to the centre of buoyancy in the vertical position
in the following way.

The intersection of the two water-lines being P, the deviation of
the centre of buoyancy is O D, which is the same as the movement
of the centre of gravity of the mass of water displaced if the wedge
A P E were moved into the position F P B. Let this distance be /,
then if OD be drawn parallel to the line joining these centres,

s
OD = VD
is the volume of displacement of the ship. This gives D the new
centre of buoyancy. The angle which O D makes with the horizontal

, where s is the volume of the wedge referred to and V D
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may be taken as : . .« OD=20Msin % approximately. The

volume s is usually about proportional to 2 sin e, so that if ¢ be a
2
0

constant depending on the form of the water-line section s = ¢ X 2 sin-2
nearly. Hence the height O M is given by the formula
.0 _ lc
OM=0D=+ =_".
asin =<
The product/s=/¢ X 2 sin g, and is double of the statical moment
of one of the wedges relatively to a fore and aft medial line
through P if the density be unity.
Let distances measured lengthwise on this line be denoted by x,
and let y denote the distance of a point from this line on a plane
bisecting the angle A P E, and let the thickness of the wedge at a point

xybe =y X zsing. Then

0 . .
:=zsinzjjy.a’ydx
c=Jf'.tiydx;
= asin? 2 .
1:—4sm2- y.dydax,

whence /¢ = 2f f y* . dy d x, which is the moment of inertia of the

and

also

water-line section about the axis through P.

Hence
I

RN

It may be taken that I = 2 x L X B3, where 4 is a coefficient
which has been determined for particular types of ships, L being the
length, and B the extreme breadth of the ship, at load-line.

In ships with fine load-line form to)

others with moderately fine form
In ships of full form of load-line . % = 0°06 to o*065
And for a rectangle . . . = o0'0833"

oM

% = 0'04 to 0055

* The student should consult Sir W. H. White's * Manual of Nava! "
ture,” in which will be found the principal data here given.
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It has been found that roughly the centre of buoyancy is from £ to
&5 of the mean draught of the ship below the water-line in ordinary
ships, though in yachts it is only from 27 to 30 per cent. of the mean
draught. In using these coefficients, care must be taken that the
length and extreme breadth are those a# the load-line.

Example.—In a ship the I of the water-line section = 005 X 286
X (53)3, the volume of displacement being 180,000 (one foot being
unit of length); find the distance of the centre of buoyancy in the
vertical position from the metacentre, and if the centre of gravity be
4 feet above the centre of buoyancy, find the metacentric height, also
the height of the metacentre above the water-line, the draught being
18 feet.

Answer.—11°83 feet.  7-83 feet. 4°63 feet.

The position of the centre of gravity is difficult to find by calcula-
tion for all conditions of loading, and after a ship is completed,
experiments are often made by moving a given weight of ballast or
deck-load from side to side and noting the inclination, and thus the
true position of the centre of gravity for a given condition is deter-
mined. Also the displacing moment being known, by equating it to
the righting couple the metacentric height may be roughly found,
since a plummet line drawn on a thwart-ship partition before and
after displacement will give the angle 6.

Example.—A ship of 5000 tons displacement lies in still water,
and the moving of a weight of 4 tons from the centre to the side of
the deck, a distance of 28 feet, causes an apparent deviation of a
plummet (7 feet long) of 1°5 inch. Find (approximately) the
metacentric height. Answer.—1- 25 foot.

Tanks for water-ballast should be completely filled before a vessel
goes to sea, else the motion of the water in them may give rise to a
serious reduction of stability.

The following values of metacentric heights for actual ships are
interesting :

’ feet.
In warships with moderate freeboard . . . 3% to 43
s ditto with central citadel turrets . . . . 54t 8
sy troopships and storeships . . . . . 2 to3
,» tugs and small non-seagoing vessels . . . 1 to2
,» torpedo boats (later types) . . . 08 to2

»» transatlantic mail steamers of new type wnh cellular
double-bottom large deck houses,and light rig, about —1 to +.1.

In submerged ships or submarines, as regards stability they are
like cigar-shaped ships, the inclination producing no change in the
form of displacement, hence for all inclinations the buoyancy force
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acts upwards through the same point. Stable equilibrium, as already
stated, is only possible when the centre of gravity lies below the
centre of buoyancy. In case of these wholly submerged vessels, the
centre of buoyancy takes the place of the metacentre. :

RESISTANCE OF SHIPS.

The total resistance to the passage of a ship through the water is
due to frictional resistance (similar to that referred to in page 26),
wave-making resistance depending on the shape and dimensions of
the vessel, and eddy-making resistance due mainly to the bluntness of
the stern.  The first i1s the most important, and may amount to from
50 to go per cent. of the total resistance. Experiments at Haslar
showed that for battleships and cruisers going at full speed only 55
per cent. of the whole resistance was due to skin friction. At a speed
of 10 knots the percentages were 79 and 84 respectively. The eddy-
making resistance is not usually more than 10 per cent. of the whole,
and is often much less.

Froude’s law connecting power, velocity and displacement may be
stated somewhat as follows :

Let L, and L, = lengths of ship and its model respectively.

D, and D, = the displacements of ship and model.
R, and R, = the resistances ’ "

It has been found that the resistances are proportional to the
displacements, which again are proportional to the cubes of the

lengths.
Now if #, and 7, are the velocities of ship and model respectively,
vjz = Iil. also P‘ = I“l3
22 L T Dy L
and

,Rl = Dl = (2./1)s
R, D, \z,/°

The horse-power and therefore the coal consumption per hour
being proportional to R 2, or in other words, to D or L# or ¢, the
coal consumption per mile is proportional to D or L? or 2%,

Now since R is proportional to L3, i.e. is proportional to L x L2,
it is proportional to 2? x D},
or

R = ¢»? D4,

Hence R v (horse-power) = ¢2° D}
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or
73 D}

Hp =2 constant for ships of the same class.

This constant is for many ships about 240, if  is expressed in
knots and D in tons, the indicated horse-power being taken.

Example.—I1f a ship of 1800 tons displacement moves at 10 knots
when the indicated horse-power is 660, find the horse-power

necessary to propel the same ship at 16 knots, the displacement being
unaltered.
Answer.—2703%.

MAxiMUuM POWER AND SPEED.

In the case of deep oceans the depth of the water has not to be
taken into account in deducing a connection between maximum speed
and horse-power necessary to propel a ship at that speed, but in the
case of ships which make their voyages mainly in shallow seas, this
depth is of importance. The following rule has recently been deduced
from speed trials of vessels of different types belonging to the Danish

and Russian navies :
A _ (2 )’
H \'

2=2+4+i+4+C (1 +i)()?*;

where

L. . v _ B =02 _¢ _L
{ being the ratio v and C = K (10) where p = T and K = B

In thislaw V is the maximum speed in knots, in water of mean depth T,
4 the indicated horse-power at speed v (less than' V) in water of the
same mean depth. L = length of ship measured on line of flotation,
and B = greatest breadth at same plane, 7 being the mean draught of
the ship. T, 4 L and B are measured in metres. The value of g

approximates towards 2z or 3 according as the ratio % decreases or

increases, and reaches its maximum value for a ratio

v _ 1 S
\7—3+\/9+3C

A curve giving the connection between %— and :I will show the

maximum value of V for
* Bulletin de I'
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ITL.

LINES OF FORCE AND EQUIPOTENTIAL
SURFACES.

Lines of force in a fluid are such that the direction of any one of
them shows the direction of resultant force on a particle of the fluid
there.

If a fluid were acted on by gravity only, the lines of force would
be radial to the centre of the earth, and a series of curves cutting
these lines orthogonally would generate by revolution a series of
equipotential surfaces or “level” surfaces. Equipotential or level
surfaces are, therefore, in the case of gravity, nearly spherical surfaces.
Small portions of the lines of force may be taken as parallel, and
the surfaces appear as plane surfaces. To prove that

EQUIPOTENTIAL SURFACES ARE SURFACES OF EQUAL PRESSURE
AND EQUAL DENSITY.

Since we are most concerned with that class of fluids called
liquids, consider a prism of a liquid at rest relative to the rest of the
liquid. Let @ be the area of either end (Fig. 9). The end pressures
are the same, the side forces
producing no effect endwise,
hence the resultants of the
side pressures are at right
angles to the axis of the prism,
i.e. a line of force (same in
direction as one of the re-
sultant forces on the sides of
the prism) is perpendicular to
an equipotential surface. In an equipotential surface, therefore,
there is no force tending to move a particle in the direction of, or
along, the surface.

Assume no friction,

Let AB and CD (Fig. 10) be lines of force, BC and AD
sections of equipotential surfaces. If a particle falls along AB it
stores energy in itself equal to F, S, ; F, being the force acting on
it, and S, the distance A B.

It passes from B to C without effort, passes up from C to D,

Fi16. 9. FiG. 10.
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expending an amount of energy F,S, in doing so, passing from D
to A without effort.
On the whole no work is done, the particle arriving where it

started from. Hence .
F,S,=F,S,

As F, S, is the work stored up in the body in falling from the one
equipotential surface to the other, F, S, is the difference of potential
of the body in the two positions = the work done on the body in
moving it from the first to the second position.

The potential energy of 1 Ib. of matter is called “potential,”
denoted by the letter V.

Let V = the potential energy of 1 Ib.
of the stuff in the lower
level surface (Fig. 11).

V + 8 V = the potential energy of 1 Ib.
of the stuff in the higher
level surface.

8 V = the work done in lifting the
1 1b. from lower to higher
level surface along a line of
force.

If gravity alone acts,
SV =284
Take little prism of base area a, height A D; its volume is
a.AD. If F=forceon 1 lb. of stuff, 2 = weight of unit volume
(say number of Ibs. in 1 cubic foot).
a.AD.w.F =total force on prism,
a (p + 3 p) = force on one end,
a p = force on the other;
hence a . 8 p must balance the effect of F.
a.8p=—-a.AD.w.F,

or —8p=F.AD.w.
But F.AD=3YV,
_ 8V
or F—AD.
Y
—Sp—AD.AD %
Hence —-8p=wdV
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a most important result, to be carefully remembered. It shows that
the change-in pressure is proportional to change in potential.
Here = is constant, showing that the density of a liquid between
two surface levels is always the same.
It follows, then, that a level surface is
an equipotential ]
an equal pressure ; surface.
an equal density )

If gravity alone acted,
‘ 84 =38V,
or

- 8P'=wi A,
i.e. change of pressure is proportional to change of depth, it being
assumed that w is constant. It is usual to assume 7z constant for
water, but this is not absolutely accurate.

— 8P = w8h, whence — P = w X / + a constant,

Let 2 = — H, and let H represent depth in feet.
— P = — wH (together with a constant, which may be negative).

P=wxH+c

Let P = P, when H = o.

Then P = wH + Py, or P — Py = wH, a well-known result.

If Py = o when H = o, i.e. if we neglect atmospheric pressure,
P =wH. For water w = 62°4 Ibs. H being in feet, P is the
pressure per square foot, which = 62°4 H, or the pressure per square
. _62:4.. H
inch (p) due to a depth H = 144 H, 23

The actual law, taking the change in the density of the water into
account, is

H
P =43"2 X 10% {emww — 1} ¥

LIQUID WHIRLING ABOUT AN AXISs.

Consider 1 1b. of liquid at P a distance of r feet from the axis
(Fig. 12).
Let a be the angular velocity in

. gl
centrifugal force on the 1 1b. is re (sinc'

.

* See the author’s ‘* Numerical Examples i
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gravity is 1 Ib. Therefore the resultant force on the 1 Ib. of
liquid is
/ 2
,\/rﬁ +1, tang="%,
& 4

The slope of the line of force is here negative,

2 _ : N7
. —tang="% = d{{'r' "*‘?\4, o
g ) \\A &/’

_:g d r
r= a’fr’

or y= -—ga120gr+ ¢

—_ a2
Hence gi (y —¢) =logr,

or the Unes of force are logarithmic
curves.

The student will find it a
useful exercise to draw some of
these curves. Suppose, for in-
stance, we wish to draw the line Y
of force, which cuts the horizontal
axis O R in M (Fig. 13).

Let y =0 when r=0 M,
and we find for ¢ the value

f---~-m - - -

FiG. 12.

fi loge OM. In fact our equa- &
tion FiG. 13.
(2) y__-logr-l-:

becomes for this line
= t&10g, OM
3) » ? Ofe ,

The following instructive example has been worked out by
Professor Perry. .A mass of water makes half a revolution per
second about a vertical axis. Draw the line of force which passes
through a point 4 feet from the axis.

Here a = m, ¢ = 3272, O M = 4, all dimensions being in feet,
He has taken the following values of »and calculated the correspond-

ing values of y from (3).
cz2
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The student should remember that the ordinary logarithm of a
number must be multiplied by 2° 3026 to get the Napierian logarithm

2 a\b \c
C
Nt ) WO VO VI ¥
B
\ .
]
€'\
EN
a
ya,
(/] R
FiG. 1

(or logarithm to base ¢) used in the above equation. The matter
may be put thus

= 2°3026 log,,

loge O M
g

oM
s
Hence the equation really emploved to calculate these numbers was
L. 322 V] \[

= (31 1416)
using an ordinary book of logarithms.

X 23026 log
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The numbers in this table when plotted as the co-ordinates of
points on squared paper, and the points thus found being joined
(Fig. 14), the curve a a is found to be the line of force required ;
the upper and lower parts of it being omitted in the figure.

By displacing this line vertically we get all the other lines of
force shown in the diagram. One such curve being drawn and a
template cut from it in cardboard, the whole series may readily be
drawn by displacing the template vertically.

EQUIPOTENTIAL SURFACES.

We have seen that the surfaces of equal pressure are everywhere
at right angles to lines of force. If then » and y are the co-ordinates
of a point on the line in which an equal pressure (equipotential)
surface cuts- a vertical plane through the axis, the tangent of the
inclination of this line must be equal to minus the co-tangent of the
inclination of the line of force at the point, and hence

dr_ &

dy o7’
or

rdr=4dy

The integral of this is
(9 y=2C+cC
4) ) zg ’
where C is some constant.
This equation belongs to a parabola, and the surfaces of equal
pressure are paraboloids of revolution with their vertices downwards.
In Fig. 14, A A and B B show the sections of these surfaces of
equal pressure calculated from (4) on the assumption of a speed of
half a revolution per second. The parabola A A is drawn by making
y = o when 7 = o, hence C = o, and giving to 7 the values below.

r 4 | 3 2 1 o's o

y 2452 | 1°38 0°613 0°153 0°'038 o

VERTICAL LEVEL SURFACES.

Since centrifugal force acts radially, the equipotential surfaces for
it will be concentric cylinders with the axis of rotation as axis
(Figs. 15 and 16). The centrifugal force acting on 1 lb. of the
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2
stuff is -7 where a is the angular velocity. Force x distance =

Hydraulic Machinery.

work done, hence

We may assume % constant for water, hence integrating

al 73
(e) P =_—— w + a constant.
2g

---- I --.--aﬂ

P| |p+op

L4

Fi1G. 15.

IVedV

Fic. 16

If » or a is large enough we may neglect gravity.
Let P = P, when » = R, (Fig. 16)

2 2
p, =%¢ Ry* | a constant.
2f
2R.2
the constant = P, — wa' R, ’
28

and equation (a) becomes

or

- "\ Similarly

(8

P=wa’r“+ P, — w a® Ry2
2g ey

2
P—P,=7‘.;ig(r‘-’—R,").

2
P-P,= ’.Z_; (7 = Ry

.

A
Nl

»—
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H 2
ty) ..Pp—P = 3‘% (Ry? — R

When at the axis R; = o, P, = o, and from equation (8) -

2,2
=%%" — w x head,
28

since

2
a® 72 = 2% and :}—g = head 4, due to velocity .

Inside a centrifugal pump a mass of water is made to rotate in
the above way, and if we neglect the fact that the water is really
moving radially, or if we suppose that the pump is merely used to
create as great a pressure as possible without any water flowing, and
if we neglect frictional resistances, we can calculate from this rule
what is the difference of pressure at the inner and outer circumferences
of the revolving part of the pump.

We shall see afterwards that this is not the total difference of
pressure available in a centrifugal pump, because there is always a
space outside the inner wheel in which the rotation is not of the
above kind, but in which there is a further gain of pressure.

The importance of having a space outside the inner wheel was
first shown by the late Professor James Thomson, and the enlargement
of this space constitutes the basis of his patent.

IV.
MOTIONS OF FLUIDS.

1. In the moving fluids we may have s#reams which are moving
masses of water, completely or incompletely bounded by solids.
When the solid boundary is complete, the water moves in a pipe ; if
the upper part of the boundary is incomplete, the water moves in a
channel or canal.

2. If the stream of fluid considered is bounded laterally by a
differently moving fluid of the same kind, the portion considered is
called a current.

3. A el is a stream bounded all round by a fluid of a different
kind.
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4. If the particles of the mass of fluid considered move spirally or
circularly we have zorfex or eddy motion.

5. In a stream we may consider the particles as moving along
definite paths in space. A chain of particles following each other
along a definite path in space may be called a fluid filament or &e-
mentary stream.

The actual motions of the particles of water in any given case are
usually very complex. Simpler modes of motion are usually assumed
in order to simplify our calculations, but the result in many cases does
not agree very well with experiment.

Thus we can study the motion as belonging to one or more of the
following classes, viz. :—

Plane layer motion, which is one of the simplest, in which particles
in a plane are supposed to move so as to remain in a plane during
motion, though the plane may not remain parallel to its initial
position.

Laminar motion is also comparatively simple. We imagine the
fluid divided into thin lamine which slide on each other, as in the
case where the velocity is not all the same across a section such as that
of a river.

Stream line motion.—In the laminar motion all the particles in one
lamina are supposed to have the same velocity. But the cross-section
of a stream may be supposed divided into indefinitely small areas,
each being the cross-section of a fluid filament or stream line.

If the motion is steady these stream lines have fixed positions in
space. Like the lines of force used in magnetic and electric theory,
they are imaginary, but very convenient, lines for defining and assign-
ing the motions of fluids. A number of these lines, enclosing a mass
of moving fluid, form a stream tube.

The actual velocity in a river, say, at any point is not constant,
but the average velocity for 5 or 10 minutes may be (usually is) nearly
constant, and may be used in calculations instead of the actual velo-
city, which is variable.

The fundamental law is

Q = AV (V being the average velocity),
or Q= |vdA

.
if we take the actual velocity at a given point; also if the flow' .is

continuous
\71 = "_\.?
, )
V, A
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or
ViA =V,A,=Q
where
Q = the volume passing in unit time
A = the area of the section normal to direction of velocity.

MEANING OF THE TERM “HEAD” IN HYDRAULICS.

Head is an old millwright's term, meaning the vertical height
through which a mass of water descended in actuating a hydraulic
machine.

If we have an orifice of area a, covered by a lid or valve, the in-
tensity of pressure there being P, then we know that Poc 4; or P =

62°4 4 in the case of water, P being the pressure per square foot and
4 the head in feet. This may be written, p = 0{'3 as proved at page
18, Nowif ©

624

the orifice.
Similarly, in the case of water issuing freely from an orifice,
©? = 2 g /& very nearly

= 4, & may here be termed the pressure head at

2
or vl = n,
2g

”

and % here may be called the “wdocity head,” meaning the head
necessary to give, in a freely issuing fluid jet, the velocity ». o is
not really = /2 g 4, but is about 0-97 of it in most cases.

Then again, part of the energy of a given mass of water is usually
wasted in passing along a given length of pipe or channel. This
waste may be expressed in feet of water and called “ friction head”
or “ head wasted by friction”” Thus if 1 1b. of water loses 4 ft.-Ibs.
of energy in passing along a given length of pipe, then it loses energy
equal to that of the 1 Ib. descending through 4 feet, and hence loses
4 feet of “head” by friction. Hence the rule:—* The loss of
energy of 1 lb. (expressed in ft.-lbs.)) is the loss of head in feet of
waler.”

FRICTION OF WATER AT DIFFERENT VELOCITIES,

A perfect fluid cannot exert tangential force or stress. Actual
fluids, with which we have to deal, do exert tangential forces; for
instance, water flowing through a pipe tends to drag the pipe along
with it, on account of friction. In all actual fluids there is viscosity
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or internal friction, but if the relative motion is only slow enough it
makes little difference whether the fluid is viscous or not.

Ordinary fluids will change in shape under the action of a force,
however small, if you only give time enough for the change to take
place, and the rate of change of shape under a given force is a
measure of the viscosity.

When a fluid flows between two infinite parallel plane surfaces,
it is not known with certainty whether the particles very near the
surfaces move or not ; probably the velocity is infinitely small at an
infinitely short distance from the surface. For instance, the velocity
at different points in the section of a river has been ascertained with
some degree of accuracy.

A Commission of the United States Government found from very
exhaustive experiments, that in a longitudinal vertical section of a
river the velocities, if represented by horizontal lines, formed the
abscissee of a parabola with its axis parallel to the surface, and
passing through the point of maximum velocity, which is situated

FiG6. 17.

at about o*3 of the depth below the surface. An up-stream wind
increases, and a down-stream wind diminishes the depth of this point.

The velocities in a horizontal section also follow a parabolic law,
the vertex of the curve being, as before, at the point of greatest
velocity.

This and most other things in hydraulics can only be settled by
experiment ; the student will do well to distrust all laws or formule
which have not received experimental verification.

The above assumption in regard to the particles touching the
solid surface being at rest, involves that of a shear strain of the fluid.

Thus, if a plane surface be moved through a liquid like water, as in
Fig. 17, neglecting the effect produced by the ends, if the wetted area
be, A the force necessary to keep up a low velocity v is proportional

Av
to .

X

Mr. William Froude, Colonel Beaufoy, and others made many
experiments with plates having sharpened edges, which were drawn
through water in a long tank at different velocities, the force neces-
sary to thus move them being observed. Eliminating, as far as possible,
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the end effects, the force R was connected with V, etc., by a law
of the kind, R = p AV*. This law should, however, be used with
caution, as it is discontinuous.

Using Froude’s results, we find that u has the value o* 0032 for
clean varnished surfaces, and 0°00456 for medium sand-paper, A
being in square feet, V in feet per second. R is in pounds, and # is
185 for smooth surfaces, but 1°9 to 21 for rough surfaces. It
might be thought that a result nearly correct would be obtained by
taking # = 2, since the actual values are so close to that number, but
a trial will show the student that using # = 2 for smooth surfaces
makes the coefficient u doubdle of its actual value.

The law is usually put in the following form (assuming velocity and
roughness sufficient to give index 2): )

1/2
R=fwA e
where
R is the total frictional resistance
w is the specific weight of the fluid
and / is the (so-called) coefficient of friction.
The work absorbed by frictional resistance

3
=Rzl=fwA:».

VALUES OF f (COEFFICIENT OF FRICTION) FOR LARGE SURFACES MOVING
IN A VERY LARGE MAss OF WATER.

Nature of Surface. v
New well-painted iron plate . . . . . 0°00489
Planed and painted plank . . . . . . 0°0035
Sarface of iron ships . . . . . . 0'00362
Vamished surface . . . . . . . 0°00258
Fine sand surface . . . . . . . 0°00418
Coarse sand surface . . . . . . . 0'00503

Professor Unwin carried out very important experiments, by
causing discs of different kinds to rotate in water, and measuring the
tendency of the containing vessel to follow the disc. He obtained in
this way results very similar to those of Froude. Professor Perry, for
a similar purpose, used the apparatus shown in Fig. 18, where a hollow
cylinder F, supported by a wire and capable of moving with a motion
of rotation round the wire as axis, dips into water or other liquid con-
tained in the annular space between D and E. The vessel DDEE
was rotated at different speeds, and the amount of torsion of the sus-
pending wire, showing the moment necessary to balance the tendency
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of the suspended cylinder to rotate, was observed in each case. For
very low speeds this moment (or F) seemed to be proportional to the
velocity, whilst for higher speeds it was nearly proportional to the
‘ Square of velocity, there being a
want of continuity in the law.
Many experiments with oils at
various temperatures were also
made. Values of log F and
log V being plotted on squared
paper, gave the lines shown in
Fig. 19; the first, being inclined
to the axis at 45° shows F A%
the second nearly agrees with
F e« V2,
Professor Osborne Reynolds
FiG. 18. has made probably the most
careful experiments on this
point yet completed. He caused water to flow through glass tubes
at different velocities, The tubes were about 44 feet long and
fitted with bell-shaped mouthpieces m, m, m (Fig. z0). Water
flowed through the tubes from a tank, the head being varied at will.
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A little aniline dye was introduced into each by a pipette 5. It was
found that up to a certain velority the coloured band extended
uniformly along the tube, as at (z), but as the velocity was increased;, _
at a certain velocity the band of colour became disturbed, as sher
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(4). When examined by an electric spark, the colour band was found
to have become broken up into eddies, asat (¢). The sudden change
in the law is very clearly shown by plotting log F and log V as
already explained, this method being due to Professor Reynolds.

- (@)
vin

gl 1“/
m
5 l> c)
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Fi16. 20.

The results seem to point to the dissipation of energy in the for-
mation of eddies at this *critical ” velocity, when a change occurs in
the law of flow, just as in the case in which a sudden change in
the direction of flow is produced.

Professor Reynolds found that the critical velocity at which this
sudden change in the index of V takes place depends upon the tem-
perature of the liquid, being lower for higher temperatures.® His
results give the following law :

D, (oD

A, i= (B 5?)

j= B X P x D x or
A b
where A and B are coefficients, D is the diameter of the pipe, ¢

the resistance per unit length of pipe. If metres and degrees
Centigrade are employed,

A =677 X 105 B = 396,

or (a

and
P=1=+ (14 003367+ 0'0c00221 #2),

¢ being the temperature.
Also, the critical velocity 7. is given by the rule

_ 1 P
B) 2 = oXp -

* Dr. Coker’s experiments on the whole confirm this, and also show that
increase of pressure adds to the stability of flow, increasing the critical velocity.
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The index 7 is 1 up to the critical velocity, afterwards it is 1722 for
lead pipes, 1°7 for the smoothest pipes, reaching 2 when the pipes
were roughest.

Proressor RevNoLDS' RULE IN ENcGLisa Uwits.

Professor Osbome Reynolds’ results are expressed by him in the
formula (in metres and degrees Centigrade already given) ;

:
= AP X e

f being the resistance per unit length of pipe expressed in (weight of)
cubic units of water. ! is therefore the slope =%,and independent

of the units chosen.
To change to British units.
Let ¢ = 3° 2809, the number of feet in 1 metre.

din feet is given b}'D:f;.

"7
v=_,
q
V being in feet per second,
A =677 X 10°
B = 396.
A _ BoPre (v)

Loa (>”'

A= (B- )(:\P'ﬁ-. % ?’_’.),}::n x L

/= 0' 000706 V x L
d
when # = 2; Abeing the head, in feet, lost in L feet of pipe.
Compare this with I’ Arey's rule,

‘ - 4,[: A%
o 3‘{“

= 0‘005(1 + ‘:'/).
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Some of Professor Reynolds' pipes were about 1 inch in
diameter ;

f=o'005(1+ I )

12 X le

= 0°'005 X 2 = 0°0lI.

4-[.—_ 4i°_..9£ = 0°'000021.
28 64°4

Hence D’Arcy’s rule gives

2

- = 0'000621 X z x L.

There is then a close agreement when we remember that D’Arcy’s
experiments were conducted only with pipes of larger diameter, and
hence his coefficient may not be correct for small pipes such as Pro-
fessor Reynolds used. Also Professor Reynolds’ index is in most
cases less than 2 ; hence his coefficient must be greater than D’Arcy’s
to give the same result.

Note that when # = 2, P2-* becomes 1, or temperature may
be neglected.

Mr. Mair has made experiments with a 1}-inch brass pipe, giving
results agreeing with the following formula :

4
7

= 0°'00031 (1 — 0°00215 /) d::"'

These and other experiments have been carried out at compara-
tively low pressures. No complete set of results for the friction of
water at high pressures has been obtained, but it is generally assumed
that the friction is independent of pressure, and that the ordinary
rules for low pressures are applicable even for such pressures as we
have in hydraulic power mains. Observations of the pressures in
mains at different points seem to confirm this assumption.
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V.

FLOW OF WATER THROUGH ORIFICES.

COEFFICIENTS OF DISCHARGE.

WHEN water flows from an orifice, say in the vertical side of a vessel
which is of large dimensions compared with the size of the orifice : if
the level of the water be kept at a given height——/4' feet—above thc
centre of the jet, the velocity of the issuing water, if there were
absolutely no physical resistance to efflux, would be that of a store
which has fallen freely through the height #, or

v=w2gh =802V,
& being 32°2.

By experiments with a jet directed vertically upwards, it has been
found that the actual velocity is not quite so great as this, varying
from o° 959 of this for o 66 feet head to o' 994 of it for 55 feet head,
the average velocity being only about
o-9g7 of it for well-formed orifices.

Now the discharge Q should fol-
low the rule Q = Az, A being the
area of the orifice; but by gauging
the actual flow it is found to be not
much over half this in many cases,
on account of the contraction of the
jet at a point such as #, Figs. 21 and
23, at which the stream lines are most
nearly parallel. Itis at a point such
as this only that our rule Q = Az should be applied. The ratio of
the area of the jet at this place to that of the orifice, is about o*64
for small sharp-edged orifices ; hence for such cases

Q=097 X0 64AW 2gk =0"62AV2gh.

The general rule is, Q = ¢ X A v 2 g % where ¢ is the coefficient
of discharge.

Many experiments have been made to determine this coefficient
for particular shapes of orifices, and at different velocities of flow.
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DIVERGENT MOUTHPIECE.

In the case of the divergent mouthpiece shown in Fig. 22, there
will be a certain limiting velocity. As the velocity at section P Q is
greater than that at R S, the pressure at the latter is less than at the
former, and when the pressure at R S becomes less than atmospheric,
the stream disengages itself from the mouthpiece, and the latter no
longer runs full.

I.et a, v, and P, be the section
velocity and pressure at P Q.

Let A, v,, P, be the same quan-
tities at section R S.

P, = P, _(n- v,)? 6
o= w = ag (see page 67).

A
Suppose - =m

then v, = v, m.

P, _P._7? (n = 1)
0 w 28

=Yy
w

Hence Py will be zero or negative respectively, if
1

I P,

A h+ ,: P
- is greater than or cqual to \/ “_ \/ L4 .
a Y/ wh

If Z (the pressure head at R S) be put = 34 feet,

the conditions are that if

Ajs greater than or equal to '\//‘ f"/‘34
a

P will be zero or negative.
w0

In practice there will be an interruption of the full-bore flow when
D
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the ratio: is a little less than that given by putting the sign of

equality into the above equation, owing to the disengagement of air
from the water. Taking, however, the theoretical limit as true, the
maximum discharge from a mouthpiece of this kind is

AR

Q=an/2¢4 Vit )
pressures being in Ibs. per square foot, areas in square feet, and w =
weight of a cubic foot of the liquid, Q will be in cubic feet per second.
In the case of the re-entrant mouthpiece of Borda, shown at B,

Fig. 23, Mr. Froude has shown experimentally that the coefficient of
contraction, as found from theoretic considerations, is correct. The

force on a valve closing the orifice is @ 2 A. This should be equal
to the momentum generated per second in the issuing water, which is

m 1, or ? wv. But Q = @ v where a is the area of the contracted
jet. The momentum is therefore
aviw
g
assuming #® = 2¢4  Hence

=2ak1,

whA=2wha,
or A=2aa,

the coetficient of contraction being §, and the coefficient of discharge
is also often taken as about '
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In sharp-edged orifices it diminishes slightly with increase of
head, and also with increase of area of orifice, being more nearly
independent of /4 in the case of large orifices.

For circular orifices it varies from o0°64 to o°59 (4 1 foot to 100
feet, diameter of orifice 0° 02 to 1 foot), square orifices giving almost
the same values, and rectangular orifices 0*63 to o°6.

For well-shaped rounded orifices the value varies from 064 to 1,

depending on the closeness of approximation to the natural shape of
the stream.

VARIATION OF THE COEFFICIENT OF DISCHARGE.

The way in which the coefficient varies is best shown by curves.
Those in Fig. 24 have been plotted from the experimental results of
Mr. J. Hamilton Smith and others. Curve A shows the values of the
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coefficient for a sharp-edged circular orifice t foot in diameter, whilst

B gives it for a similar orifice o1 foot in diameter. It will be

noticed that in these two cases the variation is in opposite directions for

the smaller heads up to 10 feet. Curve C is for a sharp-edged square
D 2



36 . Hydraulic Mackinery.

orifice of 1 foot side, whilst D gives the coefficient for a square orifice
of o-r1 foot side. It will be noticed that the coefficient varies some-
what rapidly with heads of less than 5 feet, also that on the whole it
decreases as the head increases, and increases (in the case of circular
orifices) as the size of the orifice is taken smaller and smaller, but is
practically constant for a particular orifice for heads of over 6o feet.
For a submerged orifice, if the effective head be taken as “head” in
plotting, it will be found that the coefficient is smaller than for the
same orifice with free discharge, being about o-599 for a circular
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Fi1G. 25.

orifice o-1 foot in diameter. With the same effective head depth of
submersion does not appear to affect the result, but this has not been
very fully tried.

In Fig. 25 the values of the coefficient for various rectangular
orifices are shown. Curve E is for a rectangular orifice 1 foot wide
and 1 foot deep, in other words for a square orifice, and is given here
for purposes of comparison. F is for a rectangular orifice o- 5 foot
wide and 1 foot deep, and G is for a rectangular orifice 1 foot wide
and 2 feet deep. The coefficient is greater as the orifice departs more
and more from the square in shape, and is (contrary to that in the case
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of circular orifices) greater as the area of the orifice is taken greater
and greater, the ratio of two adjacent sides remaining the same, but
the coefficient becomes nearly constant for heads of over 20 feet.

It will be noticed that the coefficient is least for a large circular
orifice ; then a small circular orifice comes next in order of value, the
square next, and the rectangle greatest of all. Hexagonal and octa-
gonal orifices approximate closely to the circular as regards value of
the coefficient. The triangular shape of orifice has been tried; its
value varies from about o'631 for a head of 1 foot to o' 605 for a
head of 2o feet, the triangle being equilateral.

This orifice is, however, of little practical importance.

The curves in Figs. 24 and 25 show the variation in ¢ for various
sharp-edged orifices in a thin vertical wall when 4 is kept constant
during the determination of each value of ¢. In accurate calculations,

¢ should not be assumed constant for ratios of Z less than 10, where:

d is the diameter of the orifice. Experiments with different liquids
have shown that ¢ for thick oil is o°72, for water o°628, and for
mercury o° 595, with a head of 3 feet and an orifice o'o2z foot dia-
meter. In fact, the more viscous the liquid, the greater is the value
of ¢. The value, however, becomes more nearly the same for all
liquids as the head becomes greater, and at heads of| say, 100 feet,
with an orifice such as that referred to above, all liquids would
probably have practically the same coefficient of discharge.

DISCHARGE FROM TANKS AND RESERVOIRS.

Bearing in mind the limitations necessary in using ¢ where 4

. . A . . .
is variable or where s small, one may obtain, approximately, the

time taken to empty a given tank or reservoir through an orifice, or to
equalise the water-level in two adjoining chambers.

Let the horizontal section of the tank be constant and equal to A
square feet ; then if 4 remained constant, owing to the tank having a
constant supply, the time taken to discharge a volume egnal/ to that of
the tank down to the centre of the orifice would be

Ak _ AL
Q T cav

Ak A=cavand ¢ =8 02 V)
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_ AA

Q=802 ca

where Q is the volume, in cubic feet, discharged per second and a is
the area of the orifice in square feet. Applying this reasoning to the
case where no water enters, if the time taken to discharge an cle-
mentary layer 4/ thick be 44, we have

dt=_Adh
802£a/1
or
/ 4 t
1= A f/rw= AKX
8 02ca )y 4'01c¢a

This is evidently just twice the time taken to discharge the same
volume with a constant head k. 1f we take ¢ = o6, the time with

0° 208 A/l

constant head is - seconds, and if no water enters the time

is twice as long.
If the reservoir be not vertical sided, the top area must be multiplied
by a constant to obtain the area at any given depth. Thus for a

wedge-shaped reservoir the area = A P ? and for a pyramidal reser-

2
voir A ( //',) , at a section % from apex where the orifice is supposed
v

to be situated, # being the head at start. Thus for the former

Y
: h
dt= N _ AW di
—8'szcxax/;* 8oz xXexXxax A’

whence

K ./" A I.
‘= ".,f wan= A
8- 02calk ), 12°03 X ¢ X a

The time, therefore, required to empty such a reservo:r \\h(,n no
water enters it is 4 of the time taken

if the head be kept constant. For a

no water enters is § of that taken to |

stant head.
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Tanks orR CHAMBERS COMMUNICATING.

The time taken to equalise the water-levdls in two adjoining tanks
or reservoirs, which can be placed in communication through an
orifice, may be obtained in the same way, supposing the rising
water in the receiving tank to act with a back-pressure in retarding
the flow. If the tanks are alike in size and shape, the time taken to
equalise levels is found by Rankine’s rule, which is as follows : “ The
time taken to equalise the level of water in two adjoining basins
with vertical sides—such as lock chambers or canals—when a com-
munication is opened between them under water, is the same as that
required to empty a vertical-sided reservoir of a volume equal to the
volume of water transferred between the chambers and of a depth
equal to their greatest difference of level.” If, for instance, the
chambers are equal, the time required to equalise levels is that
necessary to discharge a volume equal to the full of one of them
with a constant head. It must be borne in mind that for a sub-
merged orifice, ¢ is less than with free discharge, but the difference
between its value and the normal value diminishes asthe head in-
creases, and for large orifices of say 1 foot square, the difference is
inappreciable except for very small heads.

EXAMPLES,

(1) Taking ¢ = 0" 62, find time taken to fill a tank holding % ton of
water through a 1-inch sharp-edged circular orifice, the head over the
orifice being maintained at 6 feet. Ans. 45 minutes.

(2) A rectangular sharp-edged orifice, 2 inches deep and 1 inch
wide, in the side of a tank is 1o feet below the surface of the water
in the tank, the level of water being being kept constant. Find the
rate of discharge in gallons per hour through the orifice. ¢ = 0°61.

Ans. 4831 gallons per hour.

(3) A rectangular chamber, 120 feet square in section and with
vertical sides, is filled with water to a depth of 15 feet. If this water
is allowed to flow out through a rectangular orifice 2 feet by 1 foot,
the centre of the orifice being on a level with the floor of the
chamber; find how long it will take to empty the chamber, the
coefficient of discharge being taken as 0°6. Also if the orifice dis-
charges into a second chamber similar to the first, find how long it
will take to equalize the levels of the water surface in the two
chambers, the coefficient being taken as o° 59 in the latter case.

Ans. 3 hrs. 13 min. 19 sce.; 1 hr. 38 min. 13 sec.
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VI
FLOW OF WATER IN PIPES AND CHANNELS.

THE HYDRAULIC GRADIENT.

One of the first things to decide in questions relating to the flow
of water in pipes, is the “ hydraulic gradient.” An example or twe
will best explain this.

Suppose the water in a reservoir to stand at a constant height 4,
shown in Fig. 26, then if a horizontal pipe were fitted, as shown, with
vertical tubes, when the pipe is closed at a the water in these tubes
would stand to the height 4 if the tubes were long enough. When

FiG. 26.

the pipe is opened at @ and water flows through it with a steady
velocity, the height of the free surface of the water in the tubes will
be that of the dotted line @ 4. This line is called the ‘hydraulic
grade line,” and its slope the *hydraulic gradient” or virtual slope.
The height of the water in each tube shows the hydraulic or

Fic. 27.

“ pressure ” head, by American writers called the * piezometric ” height,
to distinguish it from the ‘ velocity ” head or from the hydrostatic
head shown when there is no flow.

Many interesting cases might be taken up. For instance, if a
point ¢ in the pipe f¢a (Fig. 27) rises above the straight line @ 4, the
water in @ ¢ will now stand to the height 4, the flow at ¢ must be
calculated from the hydraulic gradient 4¢, and the pipe ¢« having a
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steeper hydraulic gradient than é¢ will, if of the same diameter
and roughness as the rest, not have sufficient flow in it to keep it full,
but will act as a trough.

We might say that if the pipe were air-tight the pressure at ¢
would be less than atmospheric by an amount represented by the
height from ¢ to a@ 4 measured downwards ; but in practice air will
accumulate and spoil the siphon action.

Hence no point in a pipe should rise above the hydraulic grade
line, if it is to run full.

The water in a tube at ¢ will not stand above the pipe, and if a
branch pipe be taken off here, a valve closing its end will sustain
about atmospheric pressure.
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FiG. 28

If a pipe varies in section the hydraulic gradient will be cor-
respondingly affected. This will be seen in Fig. 28, where a pipe of
large diameter joins one of smaller diameter.. .

It is evident that the gradient must be steeper for the small pipe
than for the large one, the discharge of both being the same.

HyDRAULIC GRADIENT FOR PIPES OF VARYING DIAMETERS.

The consideration which gives us the height required here
(Fig. 28) is that the flow through all portions of the compound pipe
must be the same.

One example will show how the matler may be taken up. In
Fig. 28, let 4, = 50 feet, ¢ = 500 feet, ca = goo feet, diameter of
b¢c =1 foot, that of ¢a = } foot; find the hydraulic gradient

¢, D’Arcy’s rules (see page 43,

ze, eliminating z,

'61§
,\ - ’
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and ), hence Q* 15 the same for both

A for 6-inch pipe = 0°00036,
A for 1-foot pipe = 0°000336.
Hence
1* X (50 = /,)X 0°616 _ (0°5)* X A, X 0°616
500 X 0°000336 500 X 000036
from which 4, = 4857 feet.

Lixample 1. — At a point in this pipe where the grade line is
20289 feet above the pipe, a horizontal branch pipe 3 inches in
diamcter and 1000 feet long is inserted. Neglecting any change
thereby produced in the hydraulic gradient, find the population that
this pipe will supply at the rate of 20 gallons per head per day.

Q =,\/(°'25)J x 20.2'89 X 0616 _ 01716 cubic feet per second,
1000 X 0'000414

or, since there are 6} gallons in one cubic foot, the discharge is 107
gallons per second, that is, 92,851°2 gallons in twenty-four hours,
which, at 20 gallons per head, will supply 4642 persons.

In these examples the total head is supposed to be utilised in
overcoming friction, but the head necessary to give the assumed
velocity is neglected. For even 2 feet per second it is only ¢ foot.
‘I'aking friction at ¢ into account, the gradient will really assume
some such shape as f4 ma; the distance £ m can readily be feund
from the data given on page 58,

Example 2.—Calculate the proper diameter for a pipe to supply
100,000 inhabitants at the same rate, the distance being 5 miles and
the slope of the hydraulic gradient 13°.  (Here a likely value of A
must first be assumed, say that for 6-inch pipe.) Ans. o g5oor foot.

In these examples the coefficient for smooth pipes has been taken,
but if the flow 15 to be maintained when the pipe becomes encrusted,
it is better to use that for rough pipes. The maximum velocity of
flow in town mains should be from 2 to 7 feet per second.

1t will be well to give now a few of the best avthenticated rules
usually adopted in making calculations relating to flow in pipes.

RuLes FOR FLow or WATER IN PIPES.

In pipes the flow is often calculated on the assumption that the
resistance due to friction is proportional to 2%

D'Arcy’s experiments are |
have, and his formula based
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properly varying coefficient, may be applied to a considerable range
of velocities.

There is no very satisfactory formula for rough pipes, as the flow
depends very much on the degree of roughness of the surface, but on
the whole Tutton’s deductions seem most consistent with theory and
experiment.

The rules deduced by D’Arcy from a very complete and exhaustive
series of experiments carried out at the Paris Waterworks, may be
put simply thus. '

The head wasted by friction is proportional to the length of pipe
to the square of the velocity of flow, and is inversely proportional to
the diameter of the pipe, or as a formula,

2
I o zdL’
or
2
p=ATl L @

The rule is given by D’Arcy in a somewhat different form. Thus
he found that the loss of energy of the water per pound (or loss

! 4L . . . v* .

of head) was f x . times its kinetic energy (2 »), where f is
é"

a coeflicient sometimes called D’Arcy’s coefficient of friction =

. 1 . = oor1( I .

0°005 (1 + ‘2 d) for clean pipes, and = o'o1 (~I + xzd) for en

crusted pipes. This can be put in the simpler shape given in for-
mula (a). Values of A are given below calculated from D’Arcy’s
rules.

It must be borne in mind that D'Arcy’s coefficient has been
determined mainly from experiments on smooth pipes of somewhat
small diameters. The formula for rough pipes is, however, a good
deal used, and it seems reasonable to suppose that pipes of inter-
mediate roughness should have a coefticient intermediate between

1 | S
: + : + ‘e ma he
0005 (1 12 )and o'oI ('1 12 ), and thus we may adopt the

the value of /= 0'0075(1 + lzla')’ though there is no experimental

confirmation of this.
The following are some values of

A=3o'005(1+ ! 4 I-;ctc.

124764 4)
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Cast-IrON PiPEs (D'ARCY FORMULA).

Diameser of  Diamet - Values of A.

Prmimed Fomu  SMSHE e gL
0o°25 3 0°0004141 0°0006212 0° 0008282
0°333 4 0°0003884 0" 0005820 00007768
0'4166 3 0700037402 0°00056103 0°00074804
o5 6 0°0003623 0°0005434 0°0007246
0°5833 7 0°0003349 070005323 0°0007098
0°666 8 070003493 070003239 070006986
o°'75 9 0700034506 0°00051739 0°00069012
0833 10 0°0003416 ©0°0005124 00006832
0'9166 1 0°0003391 0°0005086 0°0006782
1'0 12 0°0003363 0° 0005044 0°0006726
1°25 |53 0°0003312 00004963 0°0006624
15 18 0°0003278 0°0004917 0°0006556
1°75 21 0°0003253 0°0004879 0° 0006506
2'0 24 0°0003234 00004851 0°0006468
30 36 0°0003192 0°000473S 0°0006384
40 48 0°0003171 0°00047356 0°0006342

Thus to find the frictional loss of head (in feet of water) in a pipe
L feet long and 4 feet in diameter. the velocity of flow being o feet
per second. mulniply the proper va‘ue of N, found from the above table,
by the length L, by the square of the velxity v, and divide by the dia-
mder of the pipe d. .

To obtain D'Arcy’s coefficient / (if it be required) multiply the
corresponding value of A by 16-1.

Example—Find the loss of head due to friction in a pipe of
medium roughness 1 mile long and 15 inches in diameter, the velocity
of flow being 3-5 feet per second.

Here A = 070004968, L = 5280. 4 = 125 and 1* = 12°25.

Head wasted: = 070004968 X 5280 X 12" 25 ~ '25°7 feet of
) '

** by friction . 25

Many other formulz are given, but D'Arey’s is the simplest and
has been much used.
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Weisbach’s law, which is, in English measures (unit of length

1 foot),
. 6\ L 2
h = (O'Ol + ° °.¥7,l_) 2o 0
: 44 Vo 4 2 g

has also been a good deal used, and tables have been compiled from
it by the late Professor James Thomson and Professor Fuller for
pipes from 3 to 70 inches in diameter, and velocities from 2 to 7 feet
per second.

RoBINSON AND THRUPP'S FORMULA.

A useful formula for small pipes is that deduced by Professor
Robinson and Mr. Thrupp.
42'6"6
Q s
where
Q = discharge in cubic feet per second

d = diameter of pipe in inches
s = cosecant of inclination = len _gth_
head

n and ¢ are coefficients depending on the material and state of the
pipe.

For new cast-iron . m=2'00,¢c= 1366 (lowest)
or n= 200, ¢= 1§ (average)
Well-cleaned old cast- '
iron . . . o n=1'75,¢=11"'74
Old encrusted iron n=2'00,c¢=22"§

X
Il

Wrought-iron gas-piping 1'90, ¢ =11"§
to n=1'85¢=16'6
Wrought-iron pipes gene-

rally . . . n=1'85,c=10"7t014"'§

I

Lead pipes. n = 174 (average), ¢ = 10 (average)
. s = 10,000 and Q is less than o' 006

The formula is not ap- s= 1.000 00018
plicable if . . -0 " ” !
s= 100 ” ” 0'001
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TutrTON’S FORMULA.

Mr. Tutton (1896)* following the rational method of Professor
(Osborne Reynolds described at page 28, brought into neat and con-
sistent shape the results of numerous experimental data available.

Reynolds’ law may be put in the form

T =cm s,
where m is the “hydraulic mean depth,” or radius (= cross-sec-

tional area = wetted perimeter), / the inclination =

4

Adopting the method described at page 28:
_since v = ¢(m)* (i)*,
log v = log ¢ 4+ «xlog (m) + y log (/) :

hence, if values of log = are vlotted as ordinates and values of log 7,
as absciss® for various values of , a series of parallel straight lines
is obtained making with the horizontal axis an angle tan~'y. Also
by plotting log = and log = in the same way another series of parallel
straight lines is obtained, making with the horizontal axis tan-!.x,
and the value of log 7 corresponding to log m = o is the log of «.
‘Thus the constants ¢, x and y can be obtained. It has been found
that x 4+ ¥ = 117 nearly, in all cases, hence the rule may be put in
the form # = ¢(m)=()*'"~*. In this way, using the results obtained
by many observers, Mr. Tutton deduced the formule given below
for pipes of various materials.

Wooden pipes. . . . v =120 (m) ()
New wrought-iron pipes . . ¥ =127 to 165 (m)®2(i) %
Ditto, asphalted . . v = 139 to 188 (m)®2 (i)
New cast-iron, and cement~.med

pipes . . . v =126 to 158 (m) % ()
Rusted or mud-coated iron plpes

(with Zight tuberculations) . v = 87 to 132 (m)®® (s)®

(, Arary ” ) . v= 31to 8o(m)*8 ()"
Glass pipes . . . 7= 141 to 169 (m)® (1)

"I'he following are some values of ¢ and x for pipes fulfilling the
given conditions,

® Il etoedent will find this matter fully discussed, and the curves given, in
Do Bovey's * Hydiaudic " 2nd edition (1902).
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Material. 1 ¢ ' L ‘
Tin . . . . . . l 18y ‘ 0°59 !
" Lead . . . . . . 168 0°'59
i Brass . . " . . . 165 0'61
| Wrought iren . . . . 160 062 !
Wood (stave) . . . .| 125 66 l
New cast iion . . . . 130 | 066
i Lap-riveted wrought iron pipe ICO to I15 066
‘ Wrought iron, asphalted . . 170 | 062 ‘
| Ordinary service-pipe . . . 1 104 066
Encrusted pipe 30to8 | 066
Brick conduit . . . . 91 . 065
" Large ditto . . . . . 110 | 0°65 \

The comparative constancy of & shows the accuracy of the
method of deduction.

Frow ofF WATER IN LARGE Pipks,

In D’Arcy’s experiments only comparatively small pipes were
used, none being over 1 foot in diameter. It is therefore very
doubtful whether his rules are applicable to large pipes ; his assump-
tion that the first power of the diameter only is to be used seems
wrong. For rough pipes it is exceedingly difficult to obtain a
formula which will give even approximately accurate results for vary-
ing degrees of roughness.

Hagan in 1854 suggested an empirical formula,;’ = ”L;', in
which the three quantitics m, » and x, representing the effects of the
three principal causes of variation of resistance—viz. roughness,
velocity, and diameter—were to be determined experimentally.

In a series of articles in ¢ Industries’ for 1886, Professor Unwin
gave, in curves, the results of a great number of experiments pre-
viously made by many observers, and deduced the values of the con-
stants referred to. His method has the great merit of showing what
variation in resistance is really due to each of the three factors, and
the formula he gives is—

k _ o-ooogq v''®7

/ s
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Mr. H. D. Pearsall has shown that this formula may be regarded
as giving the resistance for a/ pipes of large diameter and in good con-
dition, rather than the more restricted application to riveted wrought-
iron pipes which Professor Unwin suggests. The pipes varied from
o°g foot to 4 feet in diameter. Many of the expetiments from which
the rule is deduced are described in detail by Mr, Hamilton Smith in
his ¢ Hydraulics.’

The formula also agrees closely with results of subsequent ex-
periments at Seville and Hoboken on pipes 20 inches and 21 inches
in diameter.

This formula is only approximately true if the pipe be very
smooth. Sufficient data for accurately determining the flow of water
in large pipes are not yet available, but it is best to allow a margin
for excessive friction, and to guard against repeating such an expen-
sive mistake as that made at Newark (East Jersey Water Co.), US.A,,
where about 21 miles of riveted steel mains had to be duplicated,
the flow Leing not more than 70 per cent. of that expected. The
projecting lap joints and rivet heads caused considerable hydraulic
resistance—probably nearly equal to that of rough pipes.

For very rough pipes the index of z is about 2, and that of 4 11,
the coefficient being 00007 ; but these numbers vary with eveiy dif-
ferent class of pipe. The index of 4 is, however, always greater than
1, showing that an increase in diameter is of more importance in
reducing frictional loss of head than D’Arcy’s rules seem to indicate.

As a useful example, the diameter of pipe required in the above
case may be calculated, the slope being about 2 feet per 1000, and
flow necessary 7737 cubic feet per second (50,000,000 gallons per
twenty-four hours).

First, by Unwin’s formula for rough pipes,

2 _ o'ooo77?,
1000 anr
also
Q =o0"7854 d*7,
or o= 11°37 .
- 3
0° 7854 &4*
whence
b — 7" 37
4 ©°35 (o 7854
or

d = 4923 fect.
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Second, by D’Arcy’s formula for rough pipes,

_ AL
k= =

A for 4-feet pipe = o 0006.
R 77°37Y
d® = 0'0006 <67'7778354 X 500,

d = 493 feet,
By Tutton’s formula,

7 = 100 (m) %8 (/)™
4 d

m=r . 2~wd="_

4

=2 77737
! 1000 and 0‘0'78541‘

77°37 _ g-ss ‘?VU)-:.I
0°78544* 100(4) X(IOOO

77737 (1000)50 4% _ nies
0°7854 25t 100

or

whence 4 = 4'617 feet.
By the simple formula proposed by Mr. E. Sherman Gould,

-5,

where H is fall in 1000 feet of pipe.

d=A51131"
/77
d = 496 feet.

The actual diameter adopted was 4 feet, and the flow 34,000,000
gallons per twenty-four hours. If the diameter is proportional to

- zof
~/Q¢, find the proper diameter. Ans. 4 ,{/ ;:7‘ =4"668 feet.

FrLow ofF WATER IN CHANNELS.

Accurate experimental data are not so plentiful in the case of chan.
nels as for pipes, but it has been found by experiment that the square
E
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of the mean velocity of flow in channels varies approximately as what
is called the hydraulic mean depth m, i.e. ke cross-sectional area of
the stream divided by the wetted perimeter of the section ; and that it is
proportional to the slope (¢) or sine of the angle of inclination of the
water surface. Thus

=c{dmi,

¢ being a coefficient which depends on the nature of the surface and
also on the value of m.

D’Arcy and Bazin give the rule, ¢ : )’, where @ and &

(- "
am+ab
are constants depending on the nature of the surface.

D'Arcy’s values of ¢ for m = 1, 2, 4, 6 and 8 are :—

”m=
Cr 4 ] 6
(1) For very smooth surface of cement or wood . | |41 146 l 147 ‘ 147
(2) Smooth ashlar, brickwork or planks . . 119 125 i
(3) Channels, such as ruLble masonry . 87 1 l 98 , 106 | 110 | 111
(4) Channels in earth . . . 48 | 62 £ 76 | 84 ‘ 88
i ‘

The coefficient ¢ may be obtained more accurately from Gan-
guillet and Kutter’s formula,

| 811 0°00281

[

41°6 +

. +(V4l'6+ o 00281)~/m

where a, the coefficient of friction = 0°0098 for wooden stave pipe,
o‘ott for cement and sand when set, or for iron pipe, and o*o13 for
ashlar or brickwork,

With irregular sections # has the following values :—

In vewy tivm gravel, # = *oa.

Canaln nd rivers tolerably uniform, and free from stones and
weeds m .- tous,

Where stones and weeds are more plentiful, # = * 03.

In channels with surface in bad order, # = ‘035 to "o4.
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SoME VALUES OF ¢ (TRAUTWINE) FOR A SLOPE OF I IN 1000.

JJvdrautic "=

an". epth . -
‘or |, ‘o2 ‘ ‘025 ‘ ‘03 ‘035 | ‘04
o°2 113 45 ; 34 27 22 18
o:z 131 | 56 { 43 34 28 24
o . 142 .. :g | 4 39 32 27
o* 150 : 52 42 i 35 30
1 155 o 56 45 38 33
1°5 165 78 | 62 50 43 37
2 171 83 ' 66 54 46 40
3 179 89 | 71 59 51 45
4 184 93 75 63 54 48
6 190 99 81 68 59 52
10 197 105 8 . 4 6s 58
20 205 13 94 81 72 65
50 212 120 \ 101 89 79 72
100 216 124 105 91 85 77

CoONSTRUCTION TO FIND ¢,

The following construction, modified and simplified from that
given by Ganguillet and Kutter, is interesting, and when once made
for any given slopes and values of 7 enables cto be found at once by
simply laying a straight-edge across the diagram.

Draw X X' horizontal and A 'Y vertical (Fig. z9). On AY lay
off a scale to suit the values of ¢ for which the diagram is to pe used.
On A X' lay off a scale showing square roots of values of  to be con-
sidered in using the diagram. (T'he author prefers to dispense with
this scale, which can readily be done by putting a scale of values of m
up right hand side and drawing a curve whose abscissa represent v m.)

Determine the flattest slope for which the diagram is to be
employed.

Then let
0’0028

A=416 DA
M flattest slope

(M

For instance, if we take this flattest slope = 0000035 (1 in 20,000).
E 2
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and take #» = ‘o1, "02, ‘03, ‘04, then for each value of » for
which the diagram is to be used, we may take it that

811 1°811
k= 1811 =18,

)’ n or y n + (2)
N
H
o
Y
3

Fia. a9,
For w — o1 the value of
A — 4100 0.002“‘: . = .
| +°‘°°°°5 41°6 + 56 = 97°6,

whenee

[RRTR
L ‘l + 0976 = 2383,
o
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Similarly, if

n= ‘o2 y = 18815
n= ‘03 y =158
n= ‘o4 y = 143.

(Intermediate values should also be taken.)

Set these values up at AB, AC, AD, AE, on scale already
determined for ¢. Draw horizontal lines to the left through the
points B, C, D, and E.

Let x = £ X greatest value of #,
%k = 97°6, greatest n = * o4.
x=97'6 X ‘04 =3'9.
Draw from A to theleft A + = x, the distance A x being measured
on the square rootscale. This can be done by squaring 3°9 = 15-21.
Set 15°21 on scale of m, run along horizontal line to curve, then
under point where this horizontal cuts curve is extremity of the dis-
tance required to be set off at A x. Divide A x into as many equal
varts as there are values of 7 taken, and erect a perpendicular at each
of these points to meet horizontal from A Y bearing corresponding
value of n. These points of intersection, P,, P,, P, P,, etc., are on
a hyperbolic curve, but may be joined by straight lines P,, P,, etc.
Look up one metre (3-28 feet), on right-hand scale and get its
square root abscissa ; this gives the point R. Draw the radial lines
P, R, P, R, P; R, P, R, etc,, and mark these with proper values of .
For other slopes draw separate horizontal lines O, x;, O; x,, O; x5,
to represent on the scale of square roots of m, the values of x,, x,, x;,
where

X = (41 + °—°°§§) greatest 7 . . (3)
For instance, take slopes say
0°0001 (1 in 10,000), ceoxy =278
0°0002 (I in §5,000), X, = 222
ooor (I in 1,000), Xy =1°72.

Divide each of the lines O, xy, etc., into the same number of
equal parts as there are values of n. Each of the portions represents
the value of 7 asin Ax, From these dividing points erect perpen-
diculars to meet the radial lines P, R, P, R, etc., noting that corre-
sponding values of # are taken. The intersections of these perpen-
diculars and the corresponding radial lines are to be joined to give
the link-polygon-like lines for the slopes and values of s chosen. The
diagram is now complete.
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Example.—Given m, slope, and #, to find ¢.

Suppose m = 20 (1 foot being unit of length).

slope = 1 in 1000, n="'03.

From the intersection of the proper slope link-curve, and proper
radial line for value of n# (*03), draw a line to the point on A X'
which marks the 4/~ of the proper value of 7 (# 20 in this case).
This radial line cuts AY in the point showing the value of ¢ re-
quired.

The dotted line shows the radial line required in this case, and it
cuts AY at the point ¢ = 80, the drawing from which this illustration
was prepared being a small one measuring only 8 inches by 7 inches.
The actual value given by the tablesis 81.

If the slope is 1 in 10,000, 7 being 20,and # = ‘03 as before, the
second dotted line gives the value ¢ =88 ; the tables give 89.

If done to a large scale the result is wonderfully accurate.

It is evident that if slope, 7, and ¢ are given, m can be found, or if
slope, m, and ¢ be given, n can be found readily from the diagram.
The solutions for these by algebraic methods are very troublesome.

In the above construction, 1 foot is taken as the unit of length.
If 1 metre be the unit,

0° 00155
flattest slope’

o (2) » y='+l'-

Equation (1) should be 4 = 23 +

” (3) y = (23 +° 00155) greatest .

Tutton (1893) deduced the law of flow for channels

= 71754 5 1ip
v i (6),

and the rule of Messrs. Santo Crimp, and Bruges
v = 124mi ()

is recommended by high authorities as the best general formula for
sewer work.

Many practical men use the rule 7 = 123 ' m H, where H is
the fall in fect per mile; but this cannot be at all accurate under
different circumstances.
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VIIL
COEFFICIENTS OF HYDRAULIC RESISTANCE.

SUDDEN ENLARGEMENT OF PIPE.

If the cross-section of a pipe suddenly changes, as shown in
Fig. 30, the direction of flow being from the narrower to the wider
section, there is a corresponding ultimate change in the velocity of
flow, since velocity X area must be con-
stant if the pipe runs full. This change
of velocity is accompanied by a loss of
energy or “head,” due to the creation of
eddies. The rule usually employed to
calculate this loss is not capable of very
satisfactory mathematical proof, but the
following is probably as good as any :—
Let a, and a, be the areas of the cross
sections at AB and E G respectively, V and z the corresponding
velocities. Let the pipe be horizontal, so that 4 may be neglected.
Let P, be the intensity of pressure at A B, P, that at EG.

. P, V3 P,
Then the energy per lb. at AB'is ~!4 -°-; that at EG 2
W 2f w

+ :—; (see p. 67). Hence the loss of energy per lb., or loss of head,

ﬁ:Y?,f’i’_(Pz_li)
28 w W

V2 — 2
@ . . =F1T

where 4; and 4, are the “ pressure heads ” corresponding to P, and P,.
Now the pressure which acts in the direction opposite to that of
the flow is a, (P, — P,). This force may be considered as that which
causes the velocity to diminish from V to .
" But if a force acts for a very short time, the force, or impulse, is
measured by the whole change of momentum produced by it. Thus
the force necessary to change the velocity of W pounds from V to »

is ‘&—Y (V = v). Hence

- (/'2 _ﬁ)v

a (P = P) = (V=) = WAV — o),

r
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where 27 is the weight in 1bs. of one cubic unit of water. Hence

P Moty = sy = ay,
w w g
1'
or by = Iy = ¢ (V-u)
Putting this value of %, — %, into equation (), we get
Vi—? 20 (V-2
h=___7 = Z2%(V - = ) L.
®) e dven=tr

The head wasted in such a case is therefore the Acight due fo the
change of veloaity.

Since V =—Z 2 9, we may write equation (B) thus,
1
b= (a2 _ 1)2 v?
. 2g’
2
(ﬁ - 1) being called the coefficient of hydraulic resistance.
@
It is also easy to see how this loss may be expressed in terms
of the higher velocity V.
p Vi (V-2

b

2g 28
or ,

y _(V=v)t 2g VI_2Voy 4t ( 7\2
F=!_ Zo =" TP T T =1 - .
2g ><V" \'&d ! V)

But Va=17vA,

v _a .

o v A’

(-9

and if A = ra, A being the larger and a the smaller area,

2
F = (I - :) .
As shown above, F in terms of 7 is
F=(r-1)
Similarly, at all sorts of obstacles in a pipe, the head wasted is
expressed by the product of a coefficient— called the coefficient of

. -2
hydraulic resistance-—and £_.

&
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SUDDEN CONTRACIION, OF AREA,
At a suddenly contracted section a similar, but usually smaller,
loss is experienced.

Let A, a, and a (Fig. 31) be the larger pipe, the contracted vein
and the smaller pipe areas, », # and V being the corresponding
velocities, then the loss of head due to
the expansion of the stream from a to @ is

k'=(¢i ‘ Z’f—((' 2('

. a
where ¢’ represents the ratjo .
" a

Fic. 31.
It is usual to neglect the very small
loss of head due to the contraction of the stream from A to a, hence
we get a rule similar to that for a like enlargement, the loss of head

being equal to f - where f is obtained as before.
If we take the above small loss into account, we may assume it to

2
be of the form f' z_g ; hence the total loss of head is

17'2 V
T
But
Av=aV,
p=2
A’

or the loss is

a A1 Vi ab LV
TSI ETAS TR RTAETA B M

where I' may be obtained by experiment.*
In a channel, the head necessary to give the required velocity

* The auathor does not know whether these laws for loss of head due to the
sudden change of area have been authenticated by any complete and reliable experi-
ments. If so, they are worthy of that respect which a study of the usual proofs
given of them does not inspire. There does not, for instance, seem to be any good
reason for assuming anything of the nature of impact. Energy is wasted in eddies
set up by internal friction, yet we deduce a law independent of viscosity, and
seeming to indicate that with a given pipe and flow there would be the same waste
whether the fluid were tar or water, which is at lcast very doubtful.
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2
forms a considerable portion of the total head 4, 2 — :g being the

head available for overcoming frictional resistances.

zg zg’
or
F=/hx28-1;
also
Y
2 — .
v c’mL
* =2gL—
... F A .

The following table of coefficients of hydraulic resistance includes

most of the values required in practice ; some usually given, but of
doubtful accuracy, are omitted.

TABLE OF COEFFICIENTS OF HYDRAULIC RESISTANZE.

Re-istance due to ‘ Cocfficient l?f Resistance Explanation of Symbols, etc.
Square-edged eutrance to ‘ o°§ ‘
pipe .
Well-ahaped  bell-mouthed o°cs '
entrance to pipe ‘
Sharp-edged orifice in thin | 0'06
plate i
sy e L . 1
Surface friction of clean pipe | VAN f=0 OOS(I + Tz‘ﬁ)
Surface friction of rough pipe arl: J'=0"01 (u + L)
ug Ppc . i) 12D
: ' (D'Arcy’s rules)
Surface friction of channel of 2¢L _, ' m = hydraulic mean depth ;
uniform section <o ¢, a coeficient (given at
Sudden enlargement of pipe \? p- 51
N HA L 0t - - .
arcasato Aasitor (' ) Referred to higher velocity
“ » (r=¥ Referred to lower velocity
Sudden coatraction of pipe (K=1¥ K given by Rankine’s rule

fnan area A to AT g, @
being ., times the area of - . at
5 VDY PRV S K=+ \," 3‘6!8—!‘618;;

referred 10 higher velocity.



Table of Coefficients of Hydraulic Resistance. 59

TABLE OF COEFFICIENTS—continued,

Resistanc: lu: to

Curved bend in pipe .

Sharp bend or elbow in pipe
(see A, Fig. 32).

If ¢=zo:
30

Diaphragm in pipe —
Central orifice a in section,
pipe A in section.

Sluices, valves, etc.

L
. l(o*o1284-0°'0186 R)R

Coeflicient of Resi
F.

or

¢
X -
8% <20

where
7

—o P EAY
=0"131+1 847(2_R)
. in ®
079457 sin 2
+ 2°047 sint :

0°046
0°0725
0°139
01824
0364
o'7.
0°9.
1°260
1°556

2158
()

.o .

L = length of bend mea-
sured along centre of pipe
in feet ;

R = radius of bend measured
as above (Navier's for-
mula)

Weisbach’s formula, ¢ = dia-
meter of pipe, R = radius
of centre line of bend (see
B, Fig. 32).

(Weisbach). Satisfactory ex-
perimental data wanting.

See page 61.

Values of ¢, for various values
of ; are given on page 60.

See page 61.

* See Appendix.

Loss oF HEAD DUE To OBSTRUCTIONS IN PIPES,

Diaskragm in pipe: central orifice  in section ; pipe A in section.
Contracted area of water = ¢, a.

Loss of head

o)

_ 1 (vA
T 2g\qa
_ (A
_é} L a

where

- ,,)’
- ,)2

F= (.cf‘a - I)2
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VALUES DETERMINED BY WEISBACH.

F ‘;- a F % a
225°9 o'r 0°624 1°79 0°6 0°712
47°77 0°2 0°632 o°79 o°7 0°755
30°83 0'3 0°643 0°29 o8 0°813

78 04 0°659 0°06 09 0°892

3°75 o'§ 0°681

FiG. 3a2.

Sluice in pipe of rectangular section :

head lost

T

2g

COEFFICIENTS: OF HYDRAULIC RESISTANCE.
Sluices, valies, cte.  (Wasbach.)

a = area of pipe ;
= area of sluice opening
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o ]
! 0'00 \ I 4°02 [
0'09 0'9 812 . 0’4
0°39 ; o8 17°8 0’3
0°95 | o7 44°5 o2
‘ 2°08 ’ o6 193 o'l !

Sluice in cylindrical pipe:
r = ratio of height of opening to diameter of pipe.

F ” F r !
~ o'o0 | I 2'00 . 0§
R 1 0875 5'52 ' 0375
0°26 0°75 17°00 025
i 081 | 0°62§ 97'8 l o125

Cock in cylindrical pipe (C, Fig. 32) :
# = ratio of cross-section of opening to that of pipe.

F r ‘ [ F ’ » )
00§ 0°926 5° 17°3 o 385 40°
0°29 ] o°8§ 10° 312 0°31§ 45°
075 0'772 15° 52°6 0°25 50°
1°56 0°692 2)° 106°0 o'19 55
3°1 0°613 25° 216°0 0°'137 60°
5°47 0°535 30° 486°0 0°c9I 65°
968 0458 35°

ExPERIMENTS ON WASTE OF ENERGY AT BENDS.

The formula of Weisbach seems doubtful, and as there is much to
be learned about the hydraulic resistance due to obstacles of various
kinds in pipes, the fallowing reference to a simple apparatus used
by the author in the hydraulic laboratory of the Technical College,
Finsbury, and to some of the preliminary results obtained, wmay be
interesting.
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The apparatus consisted essentially of a mercury U tube connected
at its two ends to two small side tubes inserted in the pipe to be
tested at points 3 feet apart. A straight pipe was first employed, and
the loss of head in the 3 feet of pipe determined for different
velocities of flow, the velocity being determined by weighing the
water passing in say five minutes, from this determining Q and hence

v,sincev = Q = —E 4%, d being the inside diameter of the pipe.

Then similar pipes but with sharp bends or knees with angles of 30°,
45°, 60°, 90°, and 130°, etc. were used in the same way, and deducting
the friction due to the internal surface of the pipe as if straight, the waste
of energy at the bend was in each case determined. The whole of the
results need not be given, but it may be stated that the waste of energy
at a bend of this kind is not independent of the roughness of the pipe.
For all the pipes tried, the coefficient is higher for all angles than
that given by Weisbach’s formula.

' |
| Angle of Valneof F !

[
Value of F Ly experiment). ]

! Bend &.. Smooth Brass . Rough fron {Weisbach). ’
Pipe. © Ga:-ipe.
30 0°367 (0 0°935 0°0725
60 1169 o 17756 0°364
90 2702 3'0G8 0°984
130 346 4°598 27158

Observations made on glass pipes, into which dark liquid was
injected during the flow of water through them, showed that in all
probability undue importance has been attached to the supposed
formation of a #'cna~contracta. It is more likely that the eddy fric-
tion follows much the same kind of law as ordinary skin friction, and
that therefore the waste of head at sharp bends, whilst depending on

P

the angle ¢, is also about proportional to :1,, where » is about 1°7 for

the brass pipes and 2 for the rough iron pipes, and may be obtained
in each case by plotting values of log 4 and log « from observations
on a straight pipe of the given kind : # being taken at, say, 104 for
brass and 1° 32 tor roughiron, as per Tutton's rules.  The brass pipes
in these experiments were a littie over. and the iron pipes a little
under, halt the diameter of those used by Weishach,
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EXAMPLES.

1. In a water main in which water flows at a steady velocity,
find the pressure at a point 100 feet below the hydraulic grade line.
Ans. 435 lbs. per square inch,
2. A pipe, 1 foot in diameter, discharges into one 2 feet in
diameter ; if the velocity in the larger is 2 feet per second, find
the loss of head at the junction. Ans. 16°7) 69 ) feet.
3 A pipe, 6 inches in diameter, discharges into one g inches in
diameter, the flow being 80,000 gallons per hour. Find the head
wasted at th2 junction (6} gallons = 1 cubic foot).  Ans. 3- 35 feet.
4. Find the horse-power necessary to pump 1,000,000 gallons per
day to a height of 200 feet, and through a 6-inch straight pipe for a
distance of 1 mile. The coefficient of resistance at entrance is o-5,
and that for pump-valves, etc., 4.

1,000,000
1,000,000 gallons per 24 hours = Laubaing b

= 185 cubic feet per second ;
.*.  work done by pumps per second = 62°4 X 1°85 X 200

. . &L o)
+ 62 4.X 1 85(4"‘ 7 +o 5)2—2,-
Q=ar; .. 1°85=0"7854 (})7,
or
7 = 9°423 feet per second.
JS = o0"0058
L = 5280
d=1}
.*. work persec. = 62°4 X 183 {2°°+ (4 + 245 +°'5)9(;'3‘?f}
and
HP = $ork done persec. _ 62'4 X 1°85 X 544°1 _ .,
550 550

5. A pipe 1 foot in diameter suddenly contracts to 6 inches in
diameter. If the flow is 20,000 gallons per hour, find the head wasted

at the junction (¢, = 1°3). Ans. o'347 foot.
6. In the last case, if the flow were doubled find the waste of
head at the junction. Ans.  1°388 foot.

7. A clean horizontal pipeis 1 mile long and 6 inches in diameter.
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It has three bends in it, cach including an angle of 120" and with
5 feet radius; also six bends, each of 9o° and a radius equal to
twice the diameter of the pipe. Find the head wasted at entrance,
at the bends, and in the 1 mile of pipe. Velocity of flow 1965 feet
per second.
* (At entrance 0*03 foot)
Ans. -3 bends 0'054 ,,
6 0*360 ,,

In 1 mile of pipe, 14°69 feet. ‘Total 15° 144 feet.

8. In a semicircular channel, 4 feet diameter, running full, find the
head necessary to give a velocity of 2 feet per second in 1 mile of
channel (¢ = 100). Ans. 2°1 feet.

9. Find the coefficient of resistance in the last example.

Ans. 33

10. In a clean 6-inch pipe, 1000 feet long, there are four sharp
bends or knees, one including an angle of 60° two an angle of go°,
and one an angle of 120°% If the flow is 140 gallons per minute,
find the total head wasted at the square-edged entrance, at the four
bends, and in the straight part of the pipe. Ans. 3°172 feet.

11. A uniform channel has the following section: flat bottom,
8 feet wide ; two sloping sides, each making an angle of 30° with the
horizontal, the water bheing 4 feet deep. Find the hydraulic mean
depth and the flow, if the fall per mile is 3 feet. ¢= 126.

Ans. m = 2°488.
Flow = 283 cubic feet per second.

SteAapy Frow.

The reader who has followed the foregoing work carefully will
readily understand some of the practical results of Bernouilli’s great
theorem now to be referred to.

A practical illustration of this theorem is due to Mr. Froude, who
brought the matter before the British Association in 1875.

Fig. 33 shows the illustration adopted by Mr. Froude.

The pipe C B is of varying section, and as the velocity in it must
vary so that Q = 0°7854 4% X v shall always be the same, where 4
is the diameter of the pipe at the given place and » the velocity of
the water there, it is evident that at a wider section the velocity is

less, and Froude's experiment showed that the pressure is greater,

than at a smaller section if the pipe be level. The pressure *
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inserted in the pipe show water levels corresponding to the pressures

at the respective sections, each height in feet in the pressure tube

being s , where £ is the pressure of the water in Ibs. per square foot
w

at that section, and 1 is the weight of 1 cubic foot of the water.

d -~<

It will be seen that the head /Jss# is (neglecting friction) in each
case the kinetic energy of 1 lb. of the water, whilst the remaining
potential energy of the 1 lb. is 4, if A B represent the datum line.

VIII.

DISTRIBUTION OF ENERGY ALONG, AND AT
RIGHT ANGLES TO, STREAM LINES.

Bemouilli’s law is as follows :— .

A+ ?2 + s is constant for each 1 lb. of water;
2 w

this constant being in the figure represented by the vertical distance
between the lines E F and A B.

The illustration shows very well how the total “head” or energy
is distributed. Neglecting change in level of the pipe, which, for
pipes conveying pressure water to hydraulic machines is usually
permissible, we see that wherever the water flows slowly the pressure
increases, and where it flows faster the pressure diminishes.

This fact has a very important application in the case of the jet
pump of the late Professor James Thomson, referred to at page 69.

F
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ProoF oF LAw OF CONSTANT ENERGY.

Imagine a very small mass of water flowing along stream lines,
as shown in Fig. 34. Imagine it to be a frictionless fluid acted on
only by gravity. Let @ be the cross-sectional area of the little

column, its length being &5, the velocity and pressure being v and f
at one end, 7 + 8 v and £+ & f at the other. Since force = mass X
acceleratlon, the resultant force in the direction of the stream tube is
“ass 8—7/
(YA
Since the force of gravity resolved along the stream tube, together
with the resultant of the pressures on the ends of the column, is equal
to the acting force, it must equal that represented by the above ex-
pression.
The resolved part of gravity is waeds cos a, the resultant im-
pressed force in the same direction is f@ — (f + 8 f) a, hence—

%a'&: gz—wa8:c05a+fa—(f+ 8f) a.

Dividing across by @ we get

7”8:82'

st—wb‘scosa—&f
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We have taken 8s any small element of length; take it such that

st—" = 7, also let 8 s cos a = — § /; then our equation becomes

Yoso= -wdh—3Yf
g

or

-Iv8v+8/z+§-f=o.
£ vy

Letting the quantities becomes indefinitely small, and integrating,
we get

23 df _
3'_g.;./;.;.j‘w_constant N £ 9]

Or, in the case of water,

v—’+l¢+1=constant oo e (2)
28 w

These terms may be called respectively the kinetic, the potential,
and the pressure energy of the 1 lb. of water. 2'3 p may be written

for 5 where p is the pressure in lbs. per square inch, f being

the pressure in lbs. per square foot, and 7 the weight in lbs. of
1 cubic foot.

The term “ pressure energy ” has been objected to, and the nature
of an objection which is urged will be gathered from the following
illustration :—

Suppose that a strong box is filled with water, and that by screw-
ing a small screw into it we produce a great pressure p in the water.
Are we justified in regarding every pound of the water as being pos-
sessed of 2°3 p ft.-lbs. of pressure energy, or energy due to the
pressure p? No. For if we open a valve and allow the water to
escape, though there may have been a great pressure p just for a
moment, the pressure almost instantly dies away, and the water flows
out quietly and almost without energy. Evidently each pound of
water possessed very little energy. It is the question whether or
not the state of pressure will continue, and a steady flow at that pres-
sure be assured, that determines our right to call this kind of energy
¢ pressure energy.”

Suppose a man has a certain income, say from a sum invested in
British Consols, and suppose you are perfectly certain that this
income is constant, this certainty constitutes the income a store of

F 2
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wealth and a saleable commodity. To say that a man makes a
sovereign a day is not of much importance—anyone may do that once
in a while, but if he has a regwlar income of one pound a day, that
makes him an important member of society.

For a like reason, if we establish in communicating pipes, by
means of pumps or other mechanism, a working difference of pressure
at two points A and B, and if we know that this difference is likely
to be maintained and is a thing we can depend upon, then we know
that the flow from the place of higher to that of lower pressure will,
in a given pipe, be the same at all times, and the same amount of
work can be got out of the water every minute.

Leaving out of account for the moment the question of how the
difference of pressure is produced, the certainty of that difference of
pressure being maintained and a steady flow available, constitutes our
right to regard each cubic foot or each pound of the water as pos-
sessed of energy which, like any other kind of energy, has a com-
mercial value. Under these circumstances, therefore, the term
‘ pressure energy ” is a convenient one.

Thus each pound of water at the pressure of the atmosphere pos-
sesses 14°7 X 2°3 = 33°8 ft.-Ibs. of pressure energy. It would have
the same store of energy if at zero pressure and a height of 33°8 feet.
One cubic foot of water, at a pressure of 700 lbs. per square inch,
possesses 62°4 X 2°3 X 700 = 100,464 ft.-Ibs. of pressure energy.

If, then, a person receives per minute from a hydraulic power
company 100 gallons of water at a pressure of 700 lbs. per square
inch, he receives every minute 1000 X 2°3 X 700 = 1,610,000 ft.-lbs.
of energy in the shape of pressure energy (since 1 gallon of water

weighs 10 1bs.), which is equivalent to {’6—10ﬁ°~° = 488 horse-power.
g q 33,000 po

He may also receive a little energy in the shapes of potential and

kinetic energy, but this amount is so small compared with the enor-
mous store of the energy due to pressure that it may be neglected.
Thus, take 1 1b. of the water, imagine it to be moving, when received,
at a velocity of 2 feet per second, and that it is 40 feet above the

datum level. It possesses 4o ft.-lbs. of potential energy, 6L=

44
324._4 = 11_6 ft.-lb. of kinetic energy, and 2°3 X 700, or 1610 ft.-lbs,
of pressure energy. Evidently the pressure store is the only one of
much importance.
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PRrOFESSOR JaMmES THoMmsoN’s JET Pump.

This apparatus affords a practical example of the foregoing law.

The water whose flow supplies the energy required, enters at
F. (Fig. 35.) Near E the stream is contracted, and hence flows
with greater velocity and smaller pressure, water being drawn in
at R, which forms the suction pipe of the pump. At E the streams

N
N
N\

7
/

/

unite, and they are discharged together at D. Evidently this arrange-
ment only gives a certain—not very great—diminution of pressure at
E as compared with that at F and D ; hence, if we wish the pump to
draw water, say from a well or marsh, the pressure at D should be
atmospheric, because if the pressure at D is high, it will be impos-
sible to reduce it at E below that due to the atmosphere.

THE KORTING WATER-JET ELEVATOR.

This appliance seems to act somewhat in the same way as the
Thomson jet-pump. High pressure water from a tank or reservoir
at a considerable height, passing through a narrow neck in a pipe,
draws in water which has accumulated at the lower level, discharging
it, together with that taken from a higher level, at an intermediate
height. Even a comparatively low head can be utilised in this way
to cause considerable suction ; the appliance being useful in tunnel-
ling or where it is required to raise water from the deep sump of
a mine to a pump at some intermediate height.

ExAMPLE.

A horizontal pipe conveys 6 gallons of water per second ; at a
point where the diameter is 4 inches, the pressure is 5o lbs. per
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square inch. Find the velocity of flow and pressure at a point where
the diameter is 2} inches, allowing 1o per cent. loss of head by
friction between the two points.

Ans.  40° 34 Ibs. per square inch.

CHANGE OF ENERGY AT RIGHT ANGLES TO STREAM LINES.
AVERAGE “ ROTATION.”

The law for change of pressure along a stream line is given at
page 67, the total energy of unit weight of the water being always
the same. Let us now inquire
what is the law for change of
pressure as we go at right angles
to the direction of flow.

Consider a small prism of the
fluid in a stream tube, its ends at
right angles to the stream lines, as
shown in Figs. 36 and 37. letit
be unit depth at right angles to the

FIG. 36. paper, and thickness (or breadth)
287

Along stream lines the pressures have been considered (page 66).

At right angles to the stream lines the forces acting on the prism
are due to—

(r) Inside pressure p — 8.

(2) Outside pressure p + 8.

R et

FiG. 37.

(3) End pressures (their outward component =i
seen from Fig. 38).

(4) Centrifugal force.

(5) Weight of block (inward compon
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The mass of the prism is

W, its velocity being v, the

2
centrifugal force (4) is 1—’; Sl S SR

(1) is(p=32) (r—387)8¢.

(2)is(p+38p) (r+87)d¢.

(3) isp.28r.8¢.
' 22 rd¢p.287.w

(4) (as above) T e

(5) is»8¢p28rwsin . (Fig. 36.)

There is no motion at right angles to a stream line,

The sum of the above forces = o.

208280 4 (p—bp) (r = 8) 84+ 020

=(p+8)(r+8r)8p+78¢.28rwsiné,
or
wv?. 28r

&
=pr4+p8r+78p+8p.8r+27.w.8rsinéb,

whence, cancelling, we get

+pr—p8r—rdp408p.87r+ 298~

WP _ s =8y w.sind,
r.g
or 5
p wv .
5y = —wsind. . . . . (o)
Also 5 s
P L V.07 _
B 84+ -2+ T =° P

(by differentiating law for total energy

constant, given at p. 67), and
g—é = cos 0 (Fig. 39),

whence, multiplying (8) by gf", it becomes

FiG. 39.
7w cos 6 + 81’ +¥-T dv
g.08s
) . 8p _—wrv dv_ o 0.

8s & ds
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This also holds if the increments are made smaller and smaller
without limit,
Now

r+l 4P g
w . 2g

(the total store of energy of 1 Ib. of incompressible fluid moving
along stream line).
Differentiating, we get
dh v dp vdv_dE
dr w'dr gdr dr’

the law of change of store of energy as you
cross stream lines. But

Z/‘ = sin 0 (Fig. 40),
FiG. 40 ;{ = IZZ 2 sin 6, [from (a)]
. dE_ . 1 (w7t 1,,1,,
() .. ar sm9+w — wsin 0) +

0 P prdv_dE_ A
gr  gdr dr g arl’

If the block is moving, say, along a tube of decreasing diameter,
the fluid at the top of the block has a smaller velocity than that
underneath ; the block is in a state of shear.

Lines in the block are being turned through an angle owing to
this shear. We can now get the average angular velocity of these
lines. This is called by Professor Cotterill the “ molecular rotation.”
It is not “molecular”; it is simply the average rotation of every line
in the block, and better called the “rotation.” It is equal to

v, dv
1(C+70)

We see from this that if the cross-section of a tube of flow is
constant, z is constant ; hence the “rotation” is the same at every
point of the stream if » is constant.

We see also that if the total energy of a particle of unit weight is
the same in two stream lines, it always remains the same, * l
instance, if all stream lines come from rest in the same
of water, there cannot exist any * rotation ” in any of
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“ Irrotational ” motion means

- dv | v _
d_r+ P

If the radius is inﬁnite,; = o, hence :__v = o; and there is no
r

“rotation.”
This is one instance of irrotational motion.

If Zis constant (i.e. the velocity always proportional to ),
r
dv [ M ”
r= o, and the “rotation” is constant.
r

. If straight lines join into, say, circular stream lines, 5 isno longer
dv
dr
points where the curvature suddenly changes we see that there must
be a change in the “ rotation” wherever there is discontinuity of curva-
ture, and along neighbouring radii a unit has a different rate of change
of total store of energy.

[ .. .
zero. Hence, + < cannot = o,and by similar reasoning for other
r

IX.
THE MEASUREMENT OF FLOWING WATER.

IN order.that the efficiency of a water-power installation may be
tested, or the amount of power available at any point in a stream or
river determined, the rate of flow,* i.e. the number of cubic feet or
gallons of water passing a given point per unit time, must be measured.
It is not an easy thing to do this with anything like accuracy. There
are several methods which may be employed, which will now briefly
be referred to. The

“Q = AV” METHOD

consists in obtaining the area of the cross-section of the stream at
the place selected, and multiplying this by the average velocity of the

* Rate of flow here does not mean rate of motion, but refers to quantity, as
explained.
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water. If the first is in square feet and the latter in feet per second,
the product gives the rate of flow in cubic feet per second.

To obtain the section of the stream, a cord or rope may be
stretched across it at right angles to the direction of the stream,
numbered marks being placed on this at regular, and not too distant.
intervals ; soundings are then taken at these points, the depth of the
water at each number being entered in a notebook. The section is
then plotted to scale, and the area of the figure obtained by a good
planimeter or any of the methods usually employed for finding such
an area. The scale of the drawing being known, the area of the
section in square feet, say, is thus found approximately.

The second step is to obtain the mecan velocity of the water.
This is sometimes done by finding the surface velocity near the
centre of the stream by floats ; thus two observers are stationed at a
convenient distance apart, about half the distance being on each side
of the selected section. By the firing of a pistol or shouting, the first
man indicates when the float passes him ; the time till it reaches the
second observer is shown by his watch. Thus the surface velocity
can be roughly found. This, however, is a very unsatisfactory
method, as the float will #of go down stream in anything like the
required way. It may be found with a fair amount of accuracy by
the Pitot tube, a vertical glass tube with a right-angled bend in it,
the horizontal portion being placed so as to face up-stream when im-
mersed.

The water rises in the vertical portion, above the surrounding
water, by an amount = 2? = 2¢ nearly, hence one reading is suffi-
cient to enable the velocity at that point to be calculated. D’Arcy
improved the apparatus by providing two glass tubes in the vertical
portion with a means of closing the same, so that the difference of
level in them can be read after the apparatus is lifted out of the
water.

The surface velocity being found, the mean velocity varies from
0°62 to o° 85 of it, depending on the nature of the channel. Recent
experiments give o° 65 as probably the best number. It may be found
approximately by a formula like that of Basin z, =17, — 25°4 4/ im.
v, being the surface and 7, the mean velocity, z and ¢ having the
meanings already assigned to them. Prony’s formula,

NOTE.—A miner’s inch of water is a rate of flow equivalent to 12 U.S. gallons
per miuute. I U S. gallon of fresh water weighs 8- 33 Ibs., containing 231 cubic
inches ; there being therefore 7°48 such gallons to 1 cubic foot. The imperial
(English) gallon weighs 10 1bs., containing 277°27 cubic inches ; therefore 6°23
gallons (usually taken as 6} gallons) = 1 cubic foot.
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v=2@+111)
v+ 1033
V being the mean and z the surface velocity, has been a good deal
used.

CURRENT METERS.

Another and a much better way of obtaining the average velocity
of the water is by means of current meters. A modern instrument
of this class is shown in Fig. 41. It is an instrument furnished
with vanes like a screw propeller, which when immersed in flowing
water revolve, their speed being a measure of the velocity of the
water. :

The figure will readily be understood. A pair of differential
wheels B have a worm wheel engaging with them, this worm being

FiG. 41.

on the shaft of the propeller C. The apparatus is clamped firmly
on a rod A, and is inserted to the required depth in the water. At
a given instant the propeller is thrown into gear by means of the
check line D, and at the end of the required interval it is again
thrown out of gear. The reading on the counter gives the number
of revolutions, or, if suitably calibrated, the speed of the current.
Thus the velocity at a great many points in the section can be
found, and hence the mean velocity determined much more accurately
than by floats. As the velocity close to the bed and sides of the
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channel falls off considerably, probably the flow is a little less than
this method indicates ; hence a turbine tested by this method com-
bined with a dynamometer will probably show a lower efficiency than
if the more accurate method by weir gauges is employed.

This may to some extent account for the fact that Continental
tests of turbines give a lower efficiency than that usually found for
American wheels, where the latter method of measurement of flow is
followed.

THE MEASUREMENT OF FLow By WEIR-GAUGES.

By far the most accurate method of measuring the flow of water
in streams or rivers is by means of the weir-gauge, or gauge-notch, as
it is sometimes called. This usually consists of a plate of wood or
suitable material with a notch cut in it of a given form, the water to
be measured passing through this notch. There are two kinds of
no tches in general use for this purpose—the V-shaped notch of the
late Professor James Thomson (brother of Lord Kelvin), and the
rectangular notch, associated with the excellent experiments of
Mr. Francis, carried out at Lowell, Massachusetts, in the United
States. The former is most accurate for variable flows, the latter
most convenient for considerable flows. The splendid work of the
late Professor James Thomson in connection with this part of
hydraulics is known to most engineers and students, his great
generalisation in connection with the law of flow from similar orifices
being a most remarkable and useful one. Professor Thomson’s
investigations will be found recorded in the ¢ Proceedings’ of the
British Association for 1858 and 1876.
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Space does not admit of a full record, but his reasoning may be
said to follow somewhat the following lines, though it is too complete
to admit of being well given in abstract. He shows that the method
adovpted by many writers of finding, or attempting to find, the flow
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through a rectangular notch by the methods of the integral calculus is
Incorrect.

The usual method is to take a small rectangular portion (Fig. 42)
of the rectangular orifice, find the flow though it, and integrate all
such flows to get the total flow through the notch (Fig. 43).

Let Q = the volume passing per unit time (usually the number
of cubic feet per second).

dQ=+V2gkxbdh.
whence
A2 [k
Q= b.d/chgT;:szgﬁ‘dﬁ,
h A
or

Q=36+zg(ht - 4}

This is called the “ theoretic” flow, agd it is multiplied by a coefficient
called the coefficient of discharge to get the true flow, giving

Q=3c6~2gh,}
if &, is zero.

This method is wrong for the following reasons :—

First. The velocity is not the same all along the little band as here
assumed.

S«ond. In any little element of area of the orifice it is nof the
velocity of the water at it which, multiplied by the area, will give the
flow, but the component of the velocity normal to th: plane of the
dement.

Third. We have no right to assume that at any element of the area
the velocity is found by the rule # = #/2 g 4, for, except at the
boundary of the jet, the water is under more than atmospheric pres-
sure, and hence, by Bernouilli’s law, it must have less than the
velocity given by the rule above.

These and other objections, pointed out by Professor Thomson,
show that the usual method is altogether misleading and wro ng.

Professor Thomson goes on to show that if there are two similar
vessels with exactly similar orifices, the dimensions of the larger

it of the smaller, then the lines of
imilar, and the velocities will be as

similar stream tubes : the water will
. in the other, and it can be shown
no duty to perform, and the total
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homologous pressures on similarly situated small areas at » and #,
are as 1 to 753,

From the similarity of the forms of the two similar imaginary
tubes (Fig. 44) we have in each

areaat E areaat E,
area at . _ area at %,

Hence the
velocity at E _ velocity at E,

velocity at # ~ velocity at #, ’
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FiGc. 44.

and from falls of free levels it follows that

L)

v 7

v, =oMn;

this rule applying to any or all homologous points in the two regions
of flow.

Applying the rule to Professor Thomson’s V-shaped notch, where
the notch consists of an isosceles right-angled triangle, the apex (or
lowest comer of the notch) being a right angle (Fig. 45), it is
evident here that if the depth of the angle of the notch below the
level of still water in one notch be to that in another as 1 to #, so all
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homologous linear dimensions in the two flows will be as 1 to #, the
similar areas of little filaments similarly situated being as 1 to 7% and
the velocity of flow as 1 to #, therefore the volume of water flow-
ing per unit time, varying jointly as the area and velocity, will be as
1 to 72 V. Since this reasoning holds for every pair of similar streams
throughout the two flows, the quantity flowing per unit time, Q, ut

Instead of considering two separate notches with different streams,
we may take the same notch with different depths of water flowing
over-it; then,if we denote the depth of the vertex of the notch below
still-water level by 4,

Q = c/l%.

This notch has the great advantage that the water section is

always the same shape, whatever the depth of flow may be.

(3] - -

Fi1G. 45.

Professor Thomson has determined the constant by a large
number of accurate experiments, and found that in cubic feet per
minute it is (if the notch be sharp-edged) Q = o' 317 A being in

inches ; or Q, = 2635 ﬁf}' where 4, is measured in feet, Q, in
cubic feet per second.

EXPERIMENT WITH THOMSON WEIR.

The following example shows how the law of flow may be deduced
from given experimental data. The values of 4,, the head over the
corresponding

wer the weir in

nt of water (in

54. but Professor
e
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cubic feet) by the number of seconds taken. Such data are given
below.

Values of Q. } Values of 4j. ; Log Q ' Log 4;.
84°33 | 4 ‘ 1°926 o060z |
6088 | 3°517 1’784 | o550 1
35748 2830 1550 o452 |
12°59 1-84 110 0°268
5861 1°38 i 0°768 0°'140 ‘

|

The values in the third and fourth columns when plotted give the
straight line shown in Fig. 46.
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The law of this line is log Q = a log 4, 4 ¢, where @ and ¢ are
constants.
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At A log Q=067,log 4 =o0"1,
and at Blog Q = 1°92, log 4, = 0°6. Substituting these values in
the equation or law, we have

0'67=axo0'1+¢
1'92=axo0'6+c
Subtracting, we have 1°25 =a@ X o'3

or a =12"5, also ¢ = 0°42, and the law of
the line is as follows:

log Q =2'5log % +0°42;
from which it is evident that
Q=2 63 ﬁl*)

since antilog 0°42 = 2°63.

THE Hook GAUGE.

For the accurate measurement of head in
an experiment such as the foregoing, a hook
gauge is necessary. Such an apparatus is
depicted in Fig. 47. A brass rod R has a
square end F which fits tightly into a socket
in a casting which can be fastened to the
upper edge of the side of a tank or trough.
Several of these sockets may be placed in
proper positions on different pieces of ap-
paratus, and thus the same gauge can be
applied to each in turn. The rod R is made
a good tight sliding fit inside a brass tube
bearing a rack B into which works a pinion
turmed by the milled head A. The pinion
and A are on a sliding piece C which is

FiG. 47.

ket, the tube carrying
e rack B shall include
G
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the full range of head to be measured. When the water is at its
lowest level the hook is lowered, and then raised until its point is in

the surface of the water. The scale S is then moved on its two set

screws (which work in longitudinal slots), till the zero of the vernier
attached to C (not shown) is on one of the principal divisions of the

scale. The experiment is proceeded with, and the hook is raised till

its point is in the surface of the water when the latter is at its highest
level. A reading of the vernier is then taken, and by noting the
number of principal divisions on the scale over which the zero of the
vernier has passed, the difference of height of the two surface levels

is easily read off. This is the head required. In the case of an
experiment such as that described on the last page, the head is, of
course, taken in still water at a point some distance back from the
weir. It is necessary that the part C and all sliding surfaces shall fit
well and not shake or move laterally. If the gauge is intended to
be permanently fixed in one place the socket is replaced by a strap
or stirrup of the same width internally as the side of the tank, this
stirrup being screwed to the side of the tank ; and such a stirrup with
set screws is perhaps better in any case than the socket. The hook

H should be capable of being clamped to E at different points if
required, so as to allow the hook to be moved further out or in, but
this may, to some extent, be accomplished by turning C and S round
through an angle. The brass tube may be fitted with a clamping
ring and tightening screw if necessary.

RectaNGULAR WEIR, Francis’ ForMuLa.

In the case of a rectangular notch, Professor Thomson has shown
that the formula of Mr. Francis is a rational one. A notch may be
made so long relatively to the depth of water on it, that for any
increase of length the increase of flow will be proportional to the
increase of length. Let m % be such a length. In Fig. 48 two
portions, each = 4 m 4, have been supposed taken off, then over the
central part of length /= L — m 4, the flow is proportional to /, if
/ be varied whilst # remains constant.

The flow through this portion may be regarded as bounded by
two vertical planes, and suppose the twor
to be brought together as in the lower p
now study the flows separately. In the L
notch bears a constant ratio to 4, and = 2
ing to that employed for the V-shaped n
with the depth of the water: and if Q,
the lower portion, it is easy to show, as bt
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Q, = a 4* ¥/ /, where a is a constant coefficient.

Next to find Q,, the quantity flowing over the central portion. Con-
sider a portion for convenience of length = 4.

The flow over this portion will be & 4? /%, where 4 is a constant. '
This is for the length 4, hence the flow over unit length is = 6 4 v/ %,
and for length / = 4474/ 4. In other words,

Qu=bL—-mh) ANk
Adding Q, and Q, to get the flow through the whole notch, we have
Q=b(L—-—mh)rvh+ar* Vi

=bLANA—(bm—a) k> Jk,
or

Q=0(L—b”“”ﬁ)/ﬁ

b

bm—a
b
will be different if, for instance, the stream is contracted at one end
of the notch only instead of at both.
It is evident that this rule is similar in form to that deduced by
Mr. Francis, which is

Q=333(L -2 4

is a coefficient which evidently depends on & and , and

where 7 is the number of end contractions.
The variation in the value of 7 will be understood from the plans
of the notch shown in Fig. 49.
G 2
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Mr. Francis states that his formula is not applicable to cases
where the height 4 exceeds one-third of L, nor is it applicable if 4 is
very small. He is of opinion that it is correct for depths varying
from 6 inches to 2 feet. Probably it may be applied to greater
depths than 2 feet if the notch be properly proportioned. In a
triangular weir, such as Professor James Thomson’s, the coefficient is
more nearly constant than in weirs of any other section.

Trapezoidal weirs have been tried, being like rectangular weirs in
which the sides have heen forced outwards so that they slope to the
vertical at a slope which, according to Crippoletti, should be 1 in 4.

Thus the surface of the water section is } 4 longer (neglecting con-
traction) at each end than the sill of the weir. It is supposed that in
this case the flow through the end sections will balance the loss due
to contraction.

Hence Q = 333/ i (Francis) may be used, but Crippoletti
gives the coefficient as 3°367.

If there is velocity of approach, replace %4 by 4 + 1°4 %, where 4,
is the head required to give the velocity of approach. (See below.)

No doubt a similar correction may be necessary in the case of the
Thomson weir.

VELOCITY OF APPROACH.

In usual experimental weirs this is of little importance, but in the

case of large weirs in rivers it may be important. The theoretic
N . 2 T a

discharge over rectangular weirs is Q = 3 ,\/ 2 g.b6. H:, the velo-
city of approach being neglected.  But if this velocity be considerable,
then calculate the head % to give this velocity. The theoretic dis-
charge is Q = ;\/2{,’. ob(H + /')%-

Mr. Hamilton Smith proposed to modify this, because the

velocity is ot constant across the stream, being greater near the
surface than near the bottom, hence he proposed the modification
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Q= ; \/ 2g.0(H+n k)%, where n is a coefficient between 1 and
1°5 (often taken as 1°4).

Francis’ method of correcting for velocity of approach is different.
His formula (for weir without end contractions) is Q = 3°33 / i,

For two end contractions it is Q = 3°33 (/— 0°2 4) A,

If 2 = head necessary to give velocity of approach, the formula
becomes

Q=333 /[(h+ 4 - #Y
for weirs without end contractions, and
Q=3'33(/ =o'z h)[(h+ )} - K]

where there are two end contractions.

SUBMERGED WEIRS,

For a submerged weir, i.e. one in which the level of the water on
the downstream side rises higher than the crest of the weir, Herschel
has proposed the formula

Q=333/(nh)},
where 7 is a coefficient depending on ratio ;l;, where % is head on
downstream side of weir and /4 is that on upstream side. Values of
» for different values of this ratio are given below.

" Rado%
1'00 o018
0°9725 0'25
0°959 0°50
o892 07§
0°866 1°00

NuMmERICAL EXAMPLES.

(1) In a rectangular weir-gauge, the length of the notch being
5 feet, depth of water 2z feet, find the flow if there is only onc end
contraction (i.e. if only oze end of the notch has a sharp edge), and
compare this with the flow if there are two end contractions.
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The formula is
= 2- -1 8
Q—333(L mn/z)b,

where 7 is the number of end contractions.

Q=3'33(L— !lolt)ltg if n=1.

Q=333 (L- i%/z)ﬁ ifn =2

H
(=)}

Q_L—-o024_5-02%x2_5—

Q—L—O'Ih_5—0°1xz 5=

[
3
oo

[
1-3k-N

or flow with one end contraction is to flow with two as 48 to 46, or
1°0435 times as great.

(2) In a rectangular gauge with two end contractions, the mini-
mum flow being 50 cubic feet per second, find the dimensions of the
notch, 4 being } L, for this flow. Ans. L = 5°87 feet.

k= 1957 feet.

(3) A rectangular weir-gauge is employed to measure the flow in
a stream. It has sharp edges. The length of the notch is 5 feet
and the depth of water 2 feet ; find the flow.

Ans. 43 32 cubic feet per second.

(4) A V-shaped Thomson weir-gauge is used to measure the flow
in a stream, % being 4 feet * find the flow.

Ans. 8433 cubic feet per second.

(5) If the water passing through buth these notches, with a fall of
25 feet, drive turbines of o'7 efficiency; and if the dynamos, etc.,
driven by the turbines have an efficiency of 8o per cent., find the
number of kilowatts given out by the dynamos.

If the dynamos light arc and glow lamps, the number of the latter
being three times that of the former, find the number of each.

The arc lights take 12 amperes of current at a pressure of 50 volts,
and the glow lamps 65 watts each.

Ans. 151°26 kilowatts, 571 glow lamps, 190 arc lamps.

(6) Near a certain town is a river with a fall of 20 feet. The
Town Council wish to light a promenade with 25 arc lamps, like the
above, and to supply 2500 6o-watt glow lamps. Taking the effi-
ciencies as before, what height of water will be required, if the flow
be measured by a V-shaped Thomson gauge ? Ans. 5°34 feet.
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MaxiMum POWER FROM A GIVEN WATERFALL.

The power obtainable from a waterfall varies as Q x H, where
H is the effective fall; but Q and H are not usually greatest at
the same time, owing to the difficulty the tail-water finds in getting
away in time of flood. Observations of the height # of the water
over a measuring-weir, and the corresponding effective head H
should be made to determine the law connecting the two variables
Q and H, when the problem can easily be solved mathematically.
In a recent turbine installation at Newry, the engineer, Mr. Ball,
‘found that the law was approximately, H = 66 — 2:44. Neglect-
ing the effect of end contractions in the weir, which if the length
of the weir be considerable is comparatively small, we have (by

Francis’ formula) the flow over the weir per second = 3°33/ AY ;
or the flow per foot of weir per second, Q = 3°33 A3,
But the horse-power per foot of weir
- QxH X624,
550 ’
— 333X 62°4 66 — 2:44) A3
= =22 = 2°44) A%
550 (
=0'377 X 6°641 — 0377 X 2:44};
= 2'488/1% — 0°9048 At

Differentiating and equating to zero,

dMP) _ 3 884 =5 %o ' .
oy 2><2488lz 2><09048Iz_o,

or
3732 M= 22624 =o.

Dividing across by A

3.732= =1" 4
2 262 &, or £ = 1°65 feet nearly.

When, therefore, the flow is such as to give a constant height
of 1°-65 feet of water over the measuring-weir, the water-level
is that which will give the greatest horse-power obtainable from
the fall.

The case taken is one in which the fall is low, as it is in such
cases that the solution is of greatest importance.
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WATER-METERS.

Small or moderate supplies of water are most easily measured by
passing the fluid through a water-meter. The first meters invented
were for “fluids,” including gases, that of W. Pontifex of London
(1824) being probably the earliest. Hanson’s patent for a meter for
gas, water, etc., bears date 1840, and is one of the earliest in which
the use of a piston-valve is described.

The Siemens meter is of the “inferential ” type, acting on the
principle of Barker's Mill. Siemens has also another meter of the
direct impact paddle-wheel type. The inferential type of meter,
whilst very simple and useful for quick flows, is not suitable for small
flows, especially after standing idle for a time, or when the fluid
contains dirt.

The Tylor meter is another inferential meter, discharging radially.
In these the water acts on paddles or floats. Positive meters are
more accurate over greater ranges of flow.

THe KeENNEDY METER

is a well-known specimen of this class, consisting of a vertical cylinder
with a piston moving in it watertight. The piston is nearly as long
as the stroke, and it is packed by an india-rubber ring which rolls on
the piston, being prevented from coming off by flanges on the piston,
which fit the cylinder fairly well. The counting gear is in a separate
chamber where it is not under water. The valve is a four-way cock
operated by a tumbler which is moved by the piston-rod.

When the piston moves up or down to the end of its stroke this
tumbler falls over, reversing the valve and admitting the water to the
other end of the cylinder, at the same time opening the end now
filled with water to discharge. The #ravel of the piston, in any given
interval of time—mnof the number of strokes—is represented on the
counting mechanism, a most ingenious system of pawls and ratchets
operated by a pinion working into a rack on the piston-rod effecting
this result. Comparatively great accuracy at different speeds is thus
obtained. The meter, however, is somewhat bulky, and not silent in
working.

SCHONHEYDER WATER-METER.

This meter is really a water motor with thre
of which actuate a counter and so show how of
been filled and emptied. The feature of the r
shaped valve, which works on the top of a




Sc/zon/zeyder Water-Meter. 89

The valve has three ports cut right through it and also a central
cavity. There is also a central exhaust passage communicating with
the discharge pipe. Corresponding to the three ports cut in the valve
are three other ports in the fixed valve seat, whilst a central exhaust
port corresponds to the cavity of the valve. The valve contains on
its periphery three extensions, forming cups in which the ball-shaped
heads of the connecting-rods rest. As each piston descends it drags

FiG. s50.

down the valve with it until the valve flange comes into contact with
the flange round the central pillar. The valve has a rolling or
nutatory motion on its seat, but does not rotate, the rocking of the
central valve actuating the counting gear. Figs. 50, 51 and 52 show
the arrangement.

C! C% C? (Figs. 51 and 52) are the cylinders fixed to the casing,
with pistons D! D? D3 depending by rods &' 4* &° with spherical
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heads from the valve E. E rests on a similar surface F fixed to the
casing by the pillar Al

The space G below each cylinder communicates by a lateral
passage G with one of the passages H! H? H? leading through the
pillar to F, where they terminate in ports A* 42 42,

I is the central exhaust passage communicating by I' with the
discharge pipe B®; ¢ is the central cavity referred to above, which
allows any port 4! to communicate with the exhaust I. If the valve
is in the central position all the ports are covered, but a slight
inclination of E—which is always assumed in practice—is sufficient

Fia. s1. Fi1G. 52

to uncover a port, and by its cavity ¢ allow water to pass. It will
thus be seen that the rocking of the valve allows the cylinders to be
filled and emptied in succession. The way in which the counting
gear is moved will be seen at E* and K. The motion is noiseless,
and the meter in many cases is accurate to within 1 per cent. both
at high speeds and at such very low speeds as, say, half a gallon per
hour, maintaining its accuracy for long periods, owing mainly to the
peculiar motion of the valve, which causes it to become even more
closely fitting by wear. The seat is of vulcanite, and the valve of
gun-metal or similar alloy.

The “ Frost ” or Manchester meter is a well-known positive meter
of the packed-piston type.

Tue KENT “ ABSOLUTE” METER

is also a good type of this class. It has two cylinders with pistons
and valves, the piston of one cylinder actuating the valve of the other
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somewhat as in a duplex pump. The way in which the piston is
packed will be seen in Fig. 53. The water being admitted through
the holes in the piston cover at L and M presses the leathers L and

Fic. 53.



92 Hydraulic Mackinery.

M inwards, thus causing the edges of the leathers to fit the cylinder
more closely at R and T. Each piston moves a rod which actuates
a pawl, advancing the counting ratchet one tooth *per stroke.

These meters are tested to within 1 per cent. 4+ or —, at such low
flows as one gallon per hour; as well as at the highest flow for which
they are designed.

THE VENTURI METER.

For very large flows this meter is probably the only one which
can be employed without causing an appreciable obstruction. Its
use has been developed by the experiments of Mr. Clements Herschel,
which established its reliability. It consists (Fig 54) of a double cone

FiG. s54.

which can be inserted in the main, the flow of which is to be measured.
The water flowing through the contracted neck of the cones, flows
with greater velocity than in the main, and hence under less pressure
by the law referred to so often in these pages.

HERSCHEL'S FORMULA FOR VENTURI WATER-METER.

The formula is as follows :

Q= c%{" 2 Vag(H, - Hy-

Where H, — H, is the difference of head shown by piezometers at
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up-stream and contracted sections of meter respectively, whose areas
are a, and a, respectively.

The coefficient ¢ = o° 94 to 1°04 (best values 0° 96 to 1 o1, usually
0°g6too'9g). When the pressure at @, is postive water stands in the
central piezometer to the height H;.  When this pressure is negative, air
is rarefied and a column of water = 4, would be raised by syphons
placed there. If E is the height of top of section @, above datum, then
when the pressure is negative use E — 4, instead of H, in the formula.
For a given meter with given pxpes, as long as H, remains positive, the
flow is proportional to +/H, — H,, except in so far as ¢ may be
affected by varying the velocity of flow. If the proportionality holds
it is evidently possible to record values of #/H, — H, as indicated
in the illustration, and hence of the flow by a recording mechanism.
A simple record of difference of pressure, however, will not give
Q directly, as Q is proportional to the sguare root of this difference.

AMERICAN METERS.

A class of meter used almost exclusively in America, and to some
extent in this country, has the merit of simplicity, possessing only
one moving part (exclusive of the counting gear), this part doing duty
both as a valve and piston, a point on it moving usually in a
circular, or nearly circular, path.

A typical example is the
« Hersey ” meter, shown in out-
line in Fig. 55. The piston A B
moving in the casing S, acts
also as a valve. It revolves
about a centre C, in the cylin-
der S, which has internal pro-
jections with spaces into which
the teeth or lobes A of the
piston work. In this case the
number of teeth is the same as
the number of spaces in the
casing, hence each tooth works Fic. ss.
in one space.

The sf
spindle trz
of the pist
eccentric s

These
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piston or valve has no packing, and yet must be sufficiently free to
move, even when the water is charged with small impurities, they are
often defective in measuring small flows, whilst the presence of
coarser impurities often causes the meter to * stick fast.”

In America, where the supply of water allowed per head per day
is often as much as 1oo gallons, a small inaccuracy is of little con-

FiG. s6.

sequence, but in this country, where one-fifth of this amount only is
frequently allowed, greater accuracy is often necessary.

For measuring pressure water into hydraulic power mains, or to
a consumer’s plant, great accuracy is necessary, as the water often
costs as much as 2s. or 2s. 64. per 1000 gallons, whereas in London,
taking zo gallons per head per day as the ordinary domestic supply,
the cost is usually not more than half that amount.

A good meter of the above type is the “ Uniform” meter of
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Mr. Kent, shown in sectional plan and elevation in Figs. 56 and 57.
The hollow piston P is elliptical in plan and revolves about a central
cylindrical stud fitting the inner shorter axis of the ellipse exactly,
The piston is of vulcanite, working in a gun-metal cylinder, the water
entering through the orifices shown under the left end of the piston
and helped by water which enters at D, causes the piston to revolve.
until it escapes by the outlet at the right-hand end. The pressure of

SECTION THROUGCH AA
Fic. 57.

water on the little door at D, which has a triangular glass corner
abutting against the piston, assists in preserving the fit of the piston
under varying conditions. An eccentric pin actuates the counting
gear, the position of which is indicated in Fig. 57.

This meter has been a good deal used for ordinary mains, and
also for measuring the flow to consumers from hydraulic pressure
mains. The illustrations are of a meter for the latter purpose, tested
to resist a fluid pressure of zooo lbs. per square inch.
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X.
JET PROPULSION.

INTRODUCTORY EXPERIMENT.

IF a jet of water be allowed to issue from a vessel supplied with the
liquid from some outside source, as long as the discharge continues
there is a force urging the sessel in the opposite direction to that of
the flow. This is said to be due to the “reaction” of the jet.

An experimental illustration
of this is easily arranged, as
shown in Fig. 538, where a sus
pended vessel, having a hole
fitted with a converging mouth-
piece N, is supplied with water
by the pipe P. If the position
of the centre of gravity o of the
vessel and water when the orifice
is closed be obtained, then, when
the orifice is opened, the vessel
assumes the position shown by
the dotted lines, ¢ being the new
position of the centre of gravity.
If 7 be the height from o to the
point of suspension, it will be
seen from the triangle of forces
that W being the weight of vessel
and liquid, and F the reactive
\ force of the jet on the vessel,
FiG. 58. F

W= 0;, or F=W x Q;.

Now, to obtain F from theoretical considerations, it is only neces-
sary to find the momentum of the water leaving the vessel per second
—the supply, being from an outside source, need not be taken into
account here, though in some cases, where the water is drawn in by
machinery inside the vessel itself, it is most important to consider
hotw the water is drawn in.

In this experiment the orifice is, for convenience, so shaped that
its area may be taken as equal to the area of the jet, but it will be
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understood that where these are not equal, it is the area of the se#
where the stream lines are parallel that must be introduced in the
calculation.

If the ‘experiment be carefully carried out, the result agrees closely
with the calculated value of the propelling force F.

If the water remains at a constant height of % feet inside the
vessel, Q being the rate of flow in cubic feet per second and A the
area of the cross-section of the jet in square feet, then

- 624
Qx 3 X v
is the momentum of the water leaving the vessel per second, and
hence the momentum lost per second, which is equal to the propelling
force in pounds.

But v = 4/2 g4, neglecting the coefficient of velocity, which is

about o' 97. Hence,

propelling force F = g:—: X A X

=824 3 A x2xg22 x4,
32°2
or
F=2Xx62'4XAX£%;

a force equal to the weight of a column of water whose base is the area
of the jet, and whose height is twice that due to the velocity of the jet.

If the vessel moves under the action of the jet—as in the case
where the vessel floats in water—with an average velocity of V feet
per second, the work done on the vessel per second is F X V, and
the horse-power of the jet, neglecting friction, is

FxVv_ 0227 X AX AXV.

550

REACTION-WHEEL OR BARKER’S MILL.

This is a good illustration of the practical application of the
principle referred to, the propelling force being due to a constant
head of water inside.

The wheel, which was formerly a good deal used in the North, is
shown in elevation and plan in Fig. 59 ; the water being brought by a
trough drops into the wheel, which consists of a conical part with
radiating pipes, each pipe being bent at its outer end in a backward

H
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direction, relatively to the direction of motion of the wheel. If each
pipe is bell-mouthed—as it should be—at its inner end, and if we
neglect the energy wasted at the bends, etc., then the velocity of the

\§
N\
AN N
—— =]
—_— |
A N E—
x
i
!
-

F1G. 59.

issuing water, when the wheel is at rest, will be = #/2 ¢ H, nearly,
the quantity issuing per second (Q) = A7. We may in this case
assume the area A to be the combined area of the pipes.
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Let % be the velocity of the horizontal pipe at the orifice, the
distance of the centre of which from the vertical axis is 7. The total
head

2
H,=H + L
24

Neglecting friction and inertia,

v=VigH+,

which may be written in the more convenient form,

T e
= 8,\/H + o'614;-2,

where 7 is the time of one revolution in seconds. The absolute
velocity of the issuing water—relative to the earth—is 7 — », and the

momentum generated in it per second is ©wQ (v — u), which by the

law of the equality of action and re-action is equal to the propelling
force at this point,

The work done per second = z?gQ (v — u) u, whilst the potential

energy lost = w QH. The efficiency, on the assumption made
above, is
_(v—uu

T T g¢H .

Friction and inertia oppose centrifugal force, and it is a matter
which experiment alone can decide, what the actual value of v
will be in a given case, and what value of » will give the highest
efficiency.

The rule for turbines # = 0°66 # 2 ¢ H is sometimes taken though
u = #/2gH gives a higher efficiency. To apply these rules to an
example, let the speed be 10 revolutions per minute (# = 6), H = 10,
r = 5, whence v = 25°8, and from the rule for turbines, # = 15°8,
the efficiency being 49 per cent. If the speed be 20 revolutions per
minute (v = 27 38), the efficiency is 55 per cent. ; and at 40 revolu-
tions per minute (v = 31°2) the efficiency works out at 75 per cent.
In fact the efficiency increases as u jncreases, but, if friction and
inertia are taken into account, this does not hold true. The highest
practical efficiency is about 6o per cent. ; often not much more than
half this is obtained.

H 2

953437A
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The cross-section of the vertical pipe should be designed from
the ratio
A _ JH
A V2’
where A, is the area of a section at depth 4, A being the area of that
at depth H.

JET-PROPELLED BOATS.

In the foregoing examples the velocity of the jet was supposed to
be due to a constant head of water maintained by an outside supply.
Consider a vessel propelled by a jet, the water for which is drawn
into the vessel by pumps or other mechanism inside the vessel itself.
It is now all-important to consider 40w the water supplying the jet is
drawn in, because the water outside has a certain momentum relative
to the moving vessel which may or may not be partially utilised.

If the velocity of the vessel be u feet per second relative to the
sea, a mass m has momentum m  relative to the vessel before entry.
Suppose we could scoop up this water at the bows by a gradually
sloping pipe without any loss, then if the jet issues backward with a
velocity  the momentum in this direction is m2. Evidently, if
mv = m u there is no propelling force, m v — m u is the momentum
given by the pumps to the water, and if there is no loss this is also
the momentum given by the jet to the ship, since the pumps have
not to draw the water in. Let Q be the volume of water leaving the
ship per second, then the propelling force

F=(v - u) 91”
4
The backward kinetic energy with which the water again reaches
the sea is (relative to the sea)
(= Qw
2 e’
which is the work lost per second.
The work utilised per second is

(Force x distance) = (v — ) %ﬂ X u,

and the efficiency of the jet

- work utilised
work utilised 4 work lost
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(v—u)ngu
B Qw, L 0= g
v—u) *—u+4 - -Qu
] -9 ;7
r
Efficiency = +‘. = 1_‘.,2:; x
u <+ A

This expression must not be used when # = 7, as the efficiency
then = 1, but there is no propelling force. This may be regarded
as the case in which the water simply passes through the boat without
friction from the bows to the stern. 1f z and # are nearly equal the
efficiency is high, but the propelling force is small. We can never in
practice realise the ideal here assumed of utilising @/ the momentum
of the feed water.

The case in which the water is drawn in vertically might next be
considered. None of the relative momentum is, in this case, utilised.
The water may even be drawn in from the stern, when it will be
necessary to give to it a forward velocity a little greater than # in
order that it may reach the pumps. If it be discharged backward
with the velocity # there is no propelling force, though work has
been done by the pumps. The three methods have been here
referred to in the order of their efficiencies, the first method being
clearly the best.

This is very evident from Rankine’s formula for the efficiency of
a jet, which is

WS
g’ 2
wus w s* fw_zj
£ 28 28

Efficiency =

Where = represents the weight, in pounds, of water discharged
per second ;
v represents the speed of the vessel in feet per second ;
s represents the slip, or acceleration, or additional velo-
city imparted by the pumps ;
J represents a coefficient depending on the completeness
with which the velocity of feed is lost.

(If water is well taken in, as in Case 1, f may be as low as 0°033.
If the velocity of feed is all lost, f = 1.)



102 Hydraulic Machinery.

If f = 1, the efficiency = (vz-: ';)1 .
and is a maximum when s = 7.

The following actual experimental numbers, taken from Mr.
Barnby’s paper on ¢ Hydraulic Propulsion,’ t will illustrate the use of
the formula.

Discharge 1 ton per second (= = 2240).

Velocity of discharge 3725 feet per second (z + s = 37°25).

Velocity of vessel 21- 4 feet per sec. (v = 214 .*. s = 15"85).

F= loss of velocity of feed

" actual velocity of feed = 070314

These data substituted in the formula give the jet efficiency aso*7;
the efficiency of the pumps was o* 46, and the mechanical efficiency of
the engine o* 76.

It will be seen that whilst the jet itself is as efficient as a screw
propeller, the low pump efficiency reduces the resultant efficiency
much below that of propeller machinery.

The reader must be cautioned against falling into the common
mistake of supposing that it matters whether the jet is sent out above
or below the sea-level. As a matter of fact, it makes no difference
to the reactive force due to the jet whether the discharge orifice is
above or below water. This is evident from the preceding calcula-
tions, as we are concerned merely with the resultant momentum lost
per second, not at all with the effect of the jet on the sea or air
against which it impinges.

HYDRAULICALLY PROPELLED LIFEBOAT.

Jet propulsion has, however, special advantages which make it
peculiarly suitable for lifeboats where heavy seas have to be encoun-
tered, and where the consequent racing of the engines or grounding
of the boat may cause failure of engines, propeller, or paddles.  Life-
boats have recently been built with jet propulsion, and they seem to
answer very well.

Figs. 60 and 61 give two views of the City of Glasgow lifeboat,
recently built for the Harwich Station by Messrs. R. and H. Green,
of Blackwall, London. The boat is 53 feet long, 16 feet beam, and
s} feet deep, with a mean draught, on trial, of 3 feet 3 inches, and a
dispiacement of 30 tons.

* Rankine's Scientific Pagers. t Proceedings Inst. C.E., 1884.
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In regard to the machinery, referring to the figures—which show
the situation of the machinery and orifices—it will be seen that

FIG. 61.
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each end of the shaft of the compound engine is connected to a cen-
trifugal pump 2 feet 6 inches in diameter, which draws in water
through an inlet orifice in the bottom of the boat, each passage from
the pump to the orifice sloping forwards and downwards, so that
some of the momentum of the water may be utilised. Each pump
forces the water out in a jet through a 12-inch hole in the sternwards
direction, and under water. This is probably more convenient when
leaving another vessel or a landing stage, than if discharged above
water. Similar jets—in this case discharging above water—propel
the boat astern when necessary, and an orifice on each side is pro-
vided for lateral propulsion, should that be required, to prevent the
boat from bumping against a wreck, or to facilitate her getting away.
The boiler is.of the water-tube type, which, with the machinery, was
constructed by Messrs. Penn. On trial, the boat proved in every
way satisfactory, both as regards speed and manceuvring capabilities,
the speed on the measured mile being 8% knots, engines 360 revolu-
tions per minute, steam pressure 115 lbs. per square inch, indicated
horse-power 200.  Another boat of this kind, the Duke of Northumber-
land, had previously been constructed by the same firm.

No information is, so far as we know, yet available as to the effect
cf the rolling of the boat on the bearings of the pumps. If the pumps
were driven by belting or gearing, the rolling of the boat, forcing the
rapidly revolving pump shaft to assume different angles, would pro-
bably cause wearing of the bearings in a direction at right angles to
the plane in which the shaft oscillates, from the well-known resistance
which a revolving body offers to a change of the direction of its axis.
This resistance is proportional to the moment of inertia and to the
angular velocity of the body. The method of coupling the pumps
direct to the engine shaft, in all probability, gets over the difficulty.

PRESSURE OF A JET AGAINST A SURFACE.

In the foregoing the reader’s attention has been directed to the
propulsive effect of a jet on the vessel from which it issues. It is
sometimes necessary to find the gressure of a jet on a surface against
which it strikes. Without going fully into the matter, which is beyond
the scope of this work, the graphic solution shown in Fig. 64 will give
all that is usually required.

The jet is deflected through an angle 8. Construct an isosceles
triangle A C B, each side representing 7, the vertical angle being 8.
The change in direction of motion in one second is representad by-
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A B; or, if the scale be suitably altered, A B will represent the ckange
of momentum per second. It is easy to see that

B

AB=2vsin",
2

and the change of momentum per second

B

F= z'w%’—vsin B~ (since Q =Av)togw AH X sinz~_

2

<

This pressure may be resolved into two components, F, parallel
and F, normal to the original direction of the jet. These are found
from the rectangle A D B E as shown. Evidently

Fo=w Qel'(x — cos fB),

and

Fo=w %’Z} sin 8.

/////I////I/II/I//I/// 77777

7

R 2 27

FiG. 62. Fic. 63.

If B = 90° as in Figs. 62 and 63,

If B = 180°% asin Fig. 65, F, = z’i(é ¥, since cos B= -1
In Fig. 63, if the plate be placed as shown, the pressure on it is
w %’ =2wAH,since Q=Ar.

Now let the plate move up to the vessel till it closes the orifice,
the pressure on it is only 7 A H, or half what it was before. This is
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sometimes regarded as a paradox, but the forces compared are
obtained in totally different ways.

If the plate in Fig. 64 moves in the direction of A C, with a
velocity of translation #, 7 being the velocity of the jet,

F, = 1%2@_,,)(, — cos B),

and the energy transmitted per second to the plate is (neglecting
losses)

F,u=7£§’-‘(v — u) (1 = cos B).

2
This is greatest when # = ? and is then = “—'2%} when 8 =
2

180° as in the Pelton wheel.

Experiments show that the pressure of a jet is usually less than
that given by the above theory—probably owing to eddy-losses—
but it approximates most closely to it in the case of the Pelton
wheel.

PRACTICAL APPLICATIONS OF ABOVE RULES.

Anundershot water-wheel gives a good example. Formerly these
wheels had floats consisting of flat boards fixed radially, the efficiency
of the wheel being about o 3.

Poncelet improved them by introducing curved floats, so curved
that the water enters without shock and leaves without energy in the
direction of the wheel’s motion. With this arrangement an efficiency
of o' 6 is possible. Fig. 66 shows how the first condition is fulfilled.
v is the velocity of the jet, 7, the tangential velocity of the wheel,
by completing the parallelogram of velocities as in the figure, 7, the
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velocity of the jet relative to the wheel is obtained. The float or
vane at its outer edge must be tangential to the side representing ,.
To fulfil the second condition, the fall of the water relative to a
horizontal line from its highest point on the moving vane, should
be the same as its rise to that point. Draw the vane in the position
of entry and exit of the water, both, as assumed above, touching at

/
.

the outer edge a horizontal line. Bisect the angle contained by radi
drawn from the vane points to the centre of the wheel. Then it is
easy to show that (neglecting friction) the vane should make with the
circumference an angle = this half angle. This gives a usual vane
angle of about 15°.

An application of the laws for the pressure of a jet on a moving
surface may be found in the

Fic. 66.

PELTON WHEEL.

This consists of a wheel with a series of cups fastened at equal
intervals round its circumference, into which water from a jet is
directed ; the cups being so shaped internally that the jet is returned
practically parallel to its original direction.

Fig. 67 shows a perspective view of the usual type of wheel, whilst
Fig. 68 shows a form with which more than one jet can be used, thus
increasing the power of the wheel two or threefold. Pelton wheels
have come very much into use in America. They are very efficient
for high “heads,” but are not recommended for falls of less than
30 feet, whilst a fall of 2000 feet is often employed. By changing
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the nozzle the power obtainable from a given wheel may be varied.
Their efficiency varies from 8o to 86 per cent. under favourable
conditions.

As will be seen from the preceding, they should run at a circum-
ferential velocity equal to half that of the jet.
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Applying the rule already given, and assuming v = +/2 g H,
where H is the “head” of the jet, the student can work out the
following examples. Remember work of jet per second = 550 is
water horse-power, or the horse-power actually lost by the water.

NUMERICAL EXAMPLES.

1. A jet 1 inch in diameter and with a head of 1o feet, impinges
on a plane surface at right angles to it. If the velocity of the jet is
0°*97 of that due to the head, find the pressure of the jet on the surface.

Ans. 64 lbs.

2. If a jet of the same area, and with the same velocity as the
last, impinges on a surface making an angle of 60° with its direction,
find the amount and direction of the resultant pressure due to the
jet on the surface.

Ans. 6°'41bs. Direction 60° with original axis of jet.

3. Find the pressure, in its own direction, of the same jet acting
on the concave surface of a hemispherical cup, symmetrically situated
with respect to the axis of the jet. Ans. 12°8 lbs.

4. Pelton wheel, 2 feet diameter, speed 821 revolutions per
minute, pressure of water 200 lbs. per square inch, 100 cubic feet per
minute being utilised; find the water horse-power. If the actual
horse-power is 70° 3, find the efficiency.

Ans. 868 horse-power. Efficiency 81 per cent.

5. Wheel 12 inches diameter, head 170 feet, speed 997 revolutions
per minute, flow 11°39 cubic feet per minute, actual horse-power
2°92; find the water horse-power and efficiency.

Ans. 3°69 horse-power. Efficiency 8o per cent.

XI.
NOZZLES AND JETS.

A Nozziz somewhat of the shape shown in Fig. 69 is often used for
fire-hoses.

The coefficient of discharge is high; probably that for a plain
cone would be as high.

To find the velocity with which the water leaves the nozzle, let
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the level of the orifice be datum. Then the energy in ft.-lbs. of
each pound of water at AB or CD is 2°3 2, + 72-2,, 21 being the

pressure in lbs. per square inch obtained by a pressure gauge at A B,
when the water is flowing, and = the velocity there in feet per second.

F1G. 69.

Assume the pressure to be zero, at or just outside the orifice,
then the total head, i.e. the velocity head + the pressure head at AB
is available to give a velocity V at the orifice. Then

V= t.\/'zg(\z'sh + ’;})

Also D27z = 4?V, where D and 4 are the diameters at C D and E F
respectively. Eliminating 7, we have

V2 {[:, - (%\)‘} =4'6g2),
whence

" 4682 \ > a6 X 12°16 Jp,

V= (L) e (2

\/I —a (D)
¢, being the coefficient of discharge.
¢ for a well-shaped nozzle of the kind shown may be taken as

about o'97, which gives V2=

In the case of a jet driving a Pelton wheel, if the pipe conveying

the water be straight, L feet long and D feet in diameter, without
2

bends, valves, or other obstructions, the skin friction is }%L as

given at page 43. If H be the total head available at entrance

_ AL | V2, : _d?
H=" D +ég’ or smcev.—»DﬁV

ALd*
H=v: L0+ L
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H
From this = \/ AL d4 T )
tiz

aconvenient rule for the velocity of the jet when H, 4 and D are
known.

Example 1.—If D = 1 inch, 4 = § inch, g, = 60, find the velocity
of efflux and the height to which the jet will rise, neglecting resistance
of air, etc. Ans. go-'s57 feet per second. Height 1274 feet.

Example 2.—Neglecting obstructions, what will be the velocity of
a 1yinch jet driving a Pelton wheel, the pipe conveying the water
being smooth, 6 inches in internal diameter, and half-a-mile long,
the head available being 630 feet? Ans. 198-2 feet per second.

NozzLes FOR FiRe-HOSES (EXPERIMENTAL DATA).

The two forms of nozzle most in use are (1) plane conical with a
diaphragm at end having a small circular hole through which the
water issues ; and (2) hyperboloidal or conoidal surface of revolution
like that shown in Fig. 69.

From the Ellis experiments, the following are the heights to
which a given nozzle with the stated head will throw the jet. The
figures (1) and (2) denote nozzles of kinds described above after
(1) and (2) respectively.

I }
Height of Jet, Height of Jet, . Height of Jet,

Pressure #,, Head Nozzle 1 inch diam. Nozzle 1} inch diam. ' Nozzle 1t inch diam.
oispet | infeer. — - - - - - = -t -
® (@) () (2) (1) (2)
10 23 . 22 22 22 22 | 23 22
20 l 46 43 42 43 43 | 43 43
30 69 62 61 63 62 63 63
40 92 79 ‘ 78 81 79 8 8
so | ong 94 92 97 94 99 95
6 | 138 108 | 104 12 108 ‘ 115 110
70 | 161 121 115 125 121 129 123
8o 184 131 | 124 137 | 131 142 135
90 207 140 | 132 148 141 154 146
100 | 230 148

136 157 149 164 155
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Coefficients of discharge for smooth conical nozzles without dia-
phragms :

In. diam. In. diam.
3 = 0°'983 13 = 0'976
& = 0°982 1} = 0'971
1 = 0°'972

For square ring nozzles the coefficient is about o 74.

THE BALL NozzLE.

This nozzle, shown in Fig. 70, promises to be of great use for
many purposes. The ordinary nozzle emits a jet of great velocity,
which can, therefore, be directed to a considerable height, but it covers

a very small area,and in case
of a fire which is in an easily
| l accessible position, does not
answer well. The ball nozzle,
which consists of a nozzle ter-
minating in a cup in which a
ball is loosely seated, gives an
umbrella-shaped spray of great
FiG. 70, value for quenching flame and
smoke.

It might at first sight be supposed that the pressure of the jet on
the ball would tend to drive it away from the nozzle, but such is not
the case. Flg 71 will explain the reason of this.

If a jet issues from an orifice @, and impinges upon a flat plate P,
we know how to calculate the force F, necessary to keep the plate
" in position w/ken it is some distance from the orifice.

Now let P be brought nearer and nearer : when it reaches some
such position as that shown, F diminishes rapidly till as the plate
nears the orifice it is finally sucked in towards &, stopping the flow.
As soon as the flow is stopped, the plate experiences the hydrostatic
pressure due 1o the head of water in the vessél, which forces it away
from the orifice, and the action is repeated as before. An intermit-
tent spray is thus produced, but if the plate does not fit the surface
perfectly a continuous spray may be obtained. The explanation of
the phenomenon is easy. Since the corners are rounded, little
energy is lost from @ to & or ¢. Thus, neglecting 4, for every pound

2 .
of water 2 + 2°3 pis constant. But the area round 4 ¢ is much
28
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greater than that at ¢4, hence the velocity at the latter section must
be much greater than that at the former ; therefore, if the pressure at
¢ b be atmospheric, that at 4 ¢ will be less than atmospheric, and
the pressure of the air on the outside of the
plate will force it up to the orifice.

In the case of the ball nozzle a similar action
takes place: the ball not being able to com-
pletely close the orifice, spreads the issuing jet
into an umbrella-shaped cascade.

The nozcle shown in the illustration has two
branches, one consisting of the ordinary straight
nozzle, which may be used for projecting a jet
to some distance, whilst the ball nozzle on the
other branch may be used for purposes which
require a spread or sprayed jet. It is used with
low pressures.

TENDER APPARATUS FOR PICKING UP WATER.

In the foregoing cases the nozzle is at rest
and the water moves. Consider a case in which . Fe. 71,
the nozzle moves relatively to water at rest.

Fig. 72* gives two views of the apparatus provided on some
express locomotives for picking up water without stopping.

A long shallow tank, shown in section in the right-hand figure, is
fixed between the rails, and is kept filled to the requisite height with
water.

The trough has no ends, but the rails and trough are slightly
raised near the terminations of the trough so as to retain the water.

A scoop S, curved so as to point in the direction of motion,
projects downwards from the tender, this scoop being furnished with
a mouthpiece which can be turned about P so as to lift it out of the
way when not wanted. If the speed of the engine be sufficient, the
water which enters the mouthpiece finds its way up the pipe into the
tender. )

Suppose the height of A above B, the surface of the water, to be
H feet, then every pound of water, when it reaches A, has gained
H ft.-lbs. of potential energy. Let the level of B be datum ; then
since the pressure of the water is atmospheric, the kinetic energy,
imparted to each pound of it at entrance minus the energy necessary

* [Inserted by the courtesy of Mr. ¥. W. Webb, formerly Chief Mecchanical
Engineer, London and North Western Railway.
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to overcome resistances is equal to the energy—kinetic and poten-
tial—it has at A.

Let V be the velocity of the scoop relative to the water in the
tank, and z the velocity of the water at A, F being the coefficient of
hydraulic resistances. Then

Fx v

2 o2
- =H4+ “ .
2y 2y

Suppose F to be o-s, the speed of the locomotive 30 miles an

hour and H 8 feet, find the velocity at A. Find also the least speed

sufficient to raise the water.
30 miles an hour is 44 feet per second.

44? = 7,2A

whence 77 = 2115 feet per second.
If z be zero we get the limiting speed. In this case
V2
o .- -8 =
5X 644 o,
which gives V = 32°1 feet per second, or 21" 9 miles an hour.

The speed of the locomotive must be in excess of this in order to
fill the tank. Knowing the quantity to be supplied, the time avail-
able, and the area of the discharge pipe, the necessary velocity for
the water in it can be found. Some allowance must also be made
for friction.

INjecrorR HYDRANT.

In this apparatus, due to Mr. Greathead, a high-pressure jet is
used to intensify the pressure of water from ordinary mains, so as to
give a jet of sufficient pressure to reach the tops of the highest
houses.

The jet taken from the high-pressure pipes is a small one, the
main volume coming from the ordinary mains.

The way in which the high-pressure jet is used to intensify the
pressure of the larger supply will be understood from an inspection
of Fig. 73, which represents a section of the injector used at the
docks of the Manchester Ship Canal. The pressure supply from the
hydraulic mains not only raises the water from the docks, but gives
it sufficient pressure to enable it to be used in large quantity if
required at a height well above the roofs of the highest buildings on

the dock quays; some of the buildings being of seven stories, are
12



116 Hydraulic Mackhinery.

71 feet above the ground level. Since the hydraulic mains and
accumulators are always charged with pressure supply, the appliance
is most valuable in securing prompt suppression of fire, which is of
special importance where cotton and other inflammable goods are
dealt with. Mr. Ellington has invented an aufomatic injector hydrant
for use in conjunction with automatic sprinklers; the water for the
latter, being drawn mainly from the ordinary street mains, a tank on
the premises, or other handy supply, is intensified in pressure and
delivered at the sprinklers. The injector is intended to supersede
steam fire pumps in public buildings, hotels, warehouses, etc.

The apparatus consists of one or more injectors which deliver
into a discharge pipe leading to the sprinklers, also a loaded accumu-
lator in communication with that pipe ; this accumulator by its rise
and fall operates a valve which controls the supply of high-pressure
water from the hydraulic mains to the injectors. The accumulator is
kept slowly moving up and down within a certain range, a certain

Fic. 73.

leakage being permitted for this purpose. This ensures the apparatus
being always ready for action. In the event of fire, a considerable
draught being made on the discharge main by the sprinklers coming
into action, the accumulator falls quickly, opening the valve freely,
and allowing a free passage of water from the hydraulic mains to the
injectors. If the flow through the injectors be greater than that
required, the pressure in the discharge main is increased, the accumu-
lator rises and partially cuts off the high-pressure supply. Should the
discharge cease altogether, the accumulator rises rapidly, closes the
valve, and immediately resumes its slow up-and-down motion under
the control of the automatic gear. Experimental data (by Professor
Robinson) show that with such appliances there is a considerable
waste of energy in some cases.

Thus, with a low-pressure supply at a pressure of 20 lbs. per
square inch, 324 gallons per minute at a pressute of 700 Ibs. per
square inch are required to intensify the pressure of the delivery of
150 gallons per minute to a pressurs corresponding to 100 feet head,
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i.e. to ;o_c; or 43} lbs. per square inch; but with a low pressure

supply under a head of 138 feet, only 3°7 gallons per minute are
required from the high-pressure mains.

The advantage of diminishing the difference of pressure of the
two supplies is clearly shown in the following table, compiled from
the experimental data already referred to.

36,464

$ i..'.' - . . ‘e {.zx f ’Ls‘»-..«
R 0F 0% |8 2 203 0 2T
es |2 e g Te 13 S § 123 |fis
= K ‘" o ‘3 8 ©
E2} |y | 2| B2 Y s B I g% §
" . L1 <& '-2 - < & E T § 3
>5 | 95| ng § | »t 50 o ] w I PEng
= g2 29 & ta | 2 YRS >..n==
280:F )33 BB | 0| g5 83| Br | EEOEGEE By
S| &7 | =T | g% | &% | &7 2T g% [§°F g% &°
gals | feet. [P ftbs | galls. | feet. SPF) frbs. ft.-lhs.’ ftolbs. | fe.-lbs.
117°6 46 [54°43 | 54,006 32°4 |1,610 322 'szl,640'7s,oooilso,ooo‘350.736
131°9 92 |76°9 [121,348| 181 1,610 322 291.4xol75,ooo150,000'187,758
|
|

146'3! 138 194°3 .201,894 3'7 1,610 322 | 59,570 75,000 150,000

These numbers show that, as one would expect, there is great
waste of energy when a stream of water moving with a high velocity
is forced to combine with one moving at a low velocity. It appears

that to give even a moderate efficiency the low-pressure head should
not be less than ; of that of the high-pressure supply.

It should be borne in mind, however, that for fire extinction the
question of efficiency must be subordinated to that of promptitude in
the saving of life and property.
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¢“ HYDRAULICISING.”

Jets of water at high pressure are often used for gold mining. In
that case a nozzle is employed which can readily be turned in various
directions without moving the pipe conveying the pressure water.
Fig. 74 shows one of these nozzles—the “little giant.” It is said to be
very efficient. It can be rotated completely horizontally, and moved
vertically on a knuckle joint a, which is kept in position by the
counterpoise §. The packings are of leather, and the nozzle is fitted
inside with three rifle-plates, which prevent the jet from assuming
that rotary motion which is usual with high velocities, and which
impairs the effectiveness of the jet.

XIL

HYDRAULIC GENERATION OF POWER.
WATER-WHEELS.

STRICTLY speaking, this term would include the various types of
wheel propelled by water, from the old water-raising apparatus to the
modern turbine. It is here used in a limited sense, including wheels
rotating about horizontal axes and of the following kinds.

OVERSHOT WHEELS.

In these the water acts mainly by its weight, though a small
portion of its kinetic energy also is utilised.

The water passes over the summit of the wheel, as shown in
Fig. 75, and falls against and into the buckets. This type of wheel
is used for falls varying from 10 to 70 feet, with head-water level
varying not more than z feet. Its efficiency would be greater were
it not for the loss of water owing to the horizontal velocity of the
latter, and to the fact that the tail-water does not readily leave the
wheel-pit, being projected from the wheel in the opposite direction
to that of tail-race flow.

The efficiency is given by Fairbairn * as about 60 per cent., butis
generally more. Unwin gives 75 per cent.

* Fairbairn’s ¢ Mills and Millwotk,’ Part I. p. 123,
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Taking 70 per cent. efficiency, the useful horse-power is
624 x QH

o°70 X
7 550

= 0°08 Q H nearly, where H is available head

in feet.

The water should have a greater velocity than the circumference
of the wheel, the latter being about 6 feet per second ; the former
should be about 10 feet per second. This velocity is acquired by
falling through a height 16> =2 g4 or 2= '61:'—1 = 1°55 feet, or
the water should enter the wheel at a point that distance below the
level of the surface of head water.

Fi1G. 75.

The construction of the wheel is shown in the figure. The depth
of the shrouding s (Fig. 76) is from 10 to 18 inches. The diameter
of the wheel is from H — 1°3 to H — 2*5. The number of buckets

. circumference
7n being = —

If & is the inside breadth of the wheel, neglecting thickness of
buckets, the capacity of that portion of the wheel which passes the
sluice in one second is v s, 7 being the velocity of the wheel, If
the water supply is more than one-third of this, there is great loss by
spilling of the water.
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BrEAST WHEELS.

This consideration, and the fact that these wheels do not readily
clear themselves of tail-water, nor work well if immersed more than
1 foot in it, led Fairbairn to devise, or improve, the breast wheel.

This type of wheel, shown in Fig. 76, has been much used. The
water here acts by its weight alone, dropping into the buckets nearly
vertically through the apertures in the end of the pen-trough P, which
is shaped to fit the circumference of the wheel. The breast B, of
masonry, serves to some extent to prevent spilling of the water; but
in high-breast wheels over 20 feet in diameter no breast is required.
The earliest form of the high breast wheel was called a pitch-back
wheel, which was a modification of the overshot wheel introduced by

the millwright in cases where the support of the trough over the
summit was difficult, and where the tail-water had not a free flow.
The water was dropped into the wheel at a point varying from 25° to
30° from the summit. High-breast wheels take the water within
wider limits, but in all cases above half diameter.
~-aaFairbairn’s improvements cons

! sheet-iron buckets instead of

Py puckets and ventilating tk

bof L 3) making a close br

he effic SN 1 s

generally using iron
“fally more-" s where possible
* Fyer,
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The older wheels usually drove from the axle,a spur-whecl on the
latter gearing with a pinion, which in turn drove other gearing, and
hence the machinery.

Fairbairn usually employed a segmental spur-wheel—fastened to
the arms (A A, etc., Fig. 76) and shrouding near the inner circumfer-
ence of the latter—which drove a pinion. This method had two
advantages : it relieved the arms of the wheel of bending stresses,
and it gave a greater speed to the pinion, often allowing intermediate
gearing to be dispensed with.

CoNsTRUCTION FOR CURVE OF BUCKETS.

The following is Fairbairn’s construction. Refer to sketch on
lower left-hand corner of Fig. 76.

Let @ 4 be a line cutting the outside circumference of the wheel
where the water is to enter, and in the same direction. Measure
¢ ¢ = the distance apart of the buckets (5 to 8 inches for high-
breast, and 9 to 12 inches for low-breast wheels). From point ¢ draw
a radius of the wheel ¢4, Then g4 is the flat part of the bucket, and
e g the sloping part if the buckets are of wood. If of iron, draw the
curve at discretion, as shown, making due allowance for the speed of
the wheel.

The construction of the wheel is readily seen from the illustration.
The axle is of cruciform section with sockets keyed on it, into
which the arms are fixed by cotters or bolts. The shrouding has
little guides of angle-iron fastened to its inner side, to which the
sheet-iron buckets are bolted, the soling being also of sheet iron.
The water is admitted through the apertures shown in the pen-trough
P, and drops into the buckets, the supply being cut off by the curved
plate C, which is drawn over the inlet orifices by the rack r, actuated
by the pinion p, which may be moved by hand or governor, the
lower orifices being closed first to preserve the efficiency with partial
supply by increasing the average head. Fig. 117, p. 179, shows the
type of governor used by Fairbairn.

Large apertures for the passage of the water are necessary, and in
practice the ordinary vertical sluice is often employed, instead of that
shown.

The efficiency, under favourable circumstances, is from 70 to 75
per cent, :

Low-breast wheels were used by Fairbairn for as low falls as 5 to
8 feet, the diameter of the wheel being about 16 feet, and an efficiency
of about 50 per cent. was obtained.
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UNDERSHOT WHEELS,

These belong to the oldest type of water-wheel, as a reference to
Ewbank’s description of ancient water-raising appliances will show.
The old types were very inefficient. Smeaton improved them, but
Poncelet brought them to a high stage of efficiency. The theory of
his construction has been referred to.

The wheel is shown in Fig. 77. It is used for falls up to 6 feet.
It acts on the same principle as the impulse turbine, the momentum
of the water being utilised. The water enters the vanes with a

velocity nearly = ¥/2¢4 It glides up the float, comes to rest,

Fi16. 77.

and then leaves the wheel with very little horizontal velocity rela-
tive to the earth, hence with little horizontal kinetic energy.

The best circumferential velocity of the wheel, #,, is from o5 to
06 #/ 2 ¢ H, speed of wheel v, is = d n, where 4 is the diameter and »
the number of revolutions per second. Thickness of water stream
entering wheel should not exceed about 10 inches.

4 being the width of the stream, and the wheel is made about 4 inches
wider than this. The efficiency is often 6o per cent., but may be as
high as 68 per cent.
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CONSTRUCTION FOR CURVE OF VANES.

The following is given by Fairbairn :—Draw ¢ ¢ the external cir-
cumference (lower left-hand corner of Fig. 77) a E the radius of the
wheel. Take a4 =} to } of the fall.

Draw the inner circumference of shrouding through 4. Suppose
water to strike bucket at @« and in direction @ d; draw ¢ perpen-
dicular to a4, so that the angle ¢a E is from 24° to 28°. Take on
ae, fg = Laf, and from centre g, with radius ga, describe the curve
of the float.

The number of buckets N is given by the rule

N = 3d + 16,

for wheels of from 10 to 20 feet in diameter.

In these illustrations only a few of the buckets or floats are drawn,
but it will be understood that the circumference of the wheel has
symmetrically spaced buckets all round it, as in the portion in which
such buckets are shown.

XIIL
"CENTRIFUGAL PUMPS.

INTRODUCTORY.

THE centrifugal pump is not an apparatus for generating mechanical
power, but on the contrary is usually employed to give to water poten-
tial energy, utilising for this purpose the mechanical energy of a steam-
engine or other prime mover. In principle and construction it
resembles the turbine so closely, however, that the two can be most
conveniently studied together, and as the water is usually not guided
at entrance it is somewhat simpler to study than the turbine, hence
we here devote a chapter to this—in some respects the most
important—machine for raising or circulating water.

It is not necessary to dwell on the history of the development of
the centrifugal pump. Euler, the great mathematician, brought out a
crude form of centrifugal pump, of little practical value, an account
of which was published in 1754.
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In 1830, a centrifugal pump, the patent of a Mr. M‘Carty, was
used in the United States Navy Yard at New York. Several pumps
were tried by French engineers, but the appliance only came into
commercial use after the great Exhibition in London in 1851, when
the Appold pump was brought prominently into notice, with an
efficiency about three times that of any other exhibited.

Mr. Appold made many experiments, some of which seem to
show the greater efficiency of curved vanes over radial ones. There
are, however, many things to be considered, radial vane pumps
being now made (mainly by Continental makers) with good efficiency.

There is no doubt, however, that the late Mr. Appold, in con-
nection mainly with improvements in the revolving part or fan, and
Professor James Thomson, in regard to the whirlpool chamber, did
more than any others to make the centrifugal pump an apparatus of
great practical and commercial value.

Water cannot pass along a path of suddenly changing curvature
without loss of energy, which loss is greater, the greater the velocity
of the water. This fact must be borne in mind in designing machines
like centrifugal pumps or turbines, to act on, or be acted upon, by
water. Itis absolutely impossible for a frictionless liquid to flow in
a path discontinuous as to curvature. If water be compelled to flow,
say, along a pipe which suddenly changes in diameter, it produces for
itself little whirls or eddies, which act as wheels to help it round the
corners, just as one puts rollers under a log of wood to get it moved
along more easily. Wherever such eddies are set up energy is wasted,
not only by the whirls in the corners, but by smaller eddies set up

and carried along by the water. If we
= -} compel water to flow in a path like
B N BAC (Fig. 78), it creates eddies to
¢~ carry it by a path of continuous change

of curvature from B to C.
N R The probable truth of this concep-
tion of eddies can be shown expen-
mentally, for if the water flowsalong N,
and you make it pass round a similar
s curve M, you do not get as much waste
of energy in the second operation as
Fic. 78. the first ; whereas, if it first pass along
‘ R and then round S, a similar curve,
but bent the opposite way, you get fully as much waste at the second
bend as the first. This secems to indicate that the little eddies
created at N are available at M, but those produced at R have to
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be destroyed and new ones created, rotating in the opposite sense,
in order to carry the fluid round S. Itis evident then, that great
care must be exercised, in designing a centrifugal pump or turbine,
to provide for the water a path free from abrupt changes in direc-
tion. The vanes and other guiding surfaces have to be placed at

" the proper angles, so that the water may pass into or out of the
wheel without sudden change in direction or velocity, and all curves
should have a gradual change of curvature, such as may be obtained
by using an elastic strip as a template.

A pump is designed to add to the store of energy possessed by
every pound of water passing through it. The calculation of the
addition, positive or negative, which the vanes of any pump or wheel
give to each pound of water is not difficult, though writers on this
subject have confused the issues, and frightened students, by endea-
vouring to use mathematics to find out things which cannot be
calculated properly at all. The leading principle on which we
depend in designing these machines has been very lucidly explained
by Professor Perry in an illustration like the following :—Suppose a
man jumps into an American railway train, and after wandering
about through it anywhere, jumps off again ; how do we calculate the
energy, positive or negative, the train has given to him? The
answer is : find his momentum in the direction of the train’s motion
just before he alights on the train, and also find his momentum, in
the same direction, just before he leaves it. The difference of
these is the momentum he gives to the train, and “ momentum per
second ” is force. Suppose a number of men could perform the feat
every second, following each other with the greatest regularity, then
the momentum given to the train in one second could be readily
calculated, or the force which thesmen exert on the train could be
found. This force, multiplied by the distance passed through by the
train in one second (= v where v is the velocity of the trai.) would
represent the energy given per second to the train, or by the train
to the men, as the case may be.

Now, if we wish the men to enter the train without receiving
shocks from the partitions, it is evident that we should shape those
partitions in a peculiar way.

It may be well to first of all consider this illustration as bearing
on the action of water in the centrifugal pump, in which case the water
is not guided before it enters.

An example will best illustrate this. Suppose water flowing
radially with a velocity of 4 feet per second into a wheel rotating, at
the point where the water enters, with a linear velocity of 8 feet per
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second, how ought the vane to be shaped so as to allow the water to
enter with as little shock as possible ?

Let A B, Fig. 79, be the curve of the wheel. Draw C D normal
to A B, and make it 4 units long to repre-
sent the radial velocity 4. Draw CE
tangential, and 8 units long, then the di-
rection of the resultant C F is the proper
direction of the vane just at the tip. It
is the direction in which the partitions of
the carriagesin the American railway train
ought to be sloped so as to give as little
shock as possible to the men entering it.
But we also see that the man ought not

F to try to enter at right angles to the
direction of the train’s motion. Hence
in turbines the water is guided in the

proper direction before it enters the revolving wheel. This is one
reason—though a minor one—why turbines are more efficient than
centrifugal pumps.

Take a simple case (Fig. 80): the water had 70 momentum in
the direction of the motion of the wheel before it entered it, at A ;

having entered, it now moves along the vane
A B, gradually attaining the velocity of the
\ wheel, and then it finally leaves at B. If the
vane is radial at B it has the same velocity as
the wheel just before it leaves. Let this ve-
A locity be 7 feet per second. Then every
o pound of water leaving B, leaves with a tan-

r1G. 79.

Fic. 8o. gential momentum :;27'.—;, and retards the

wheel with a force of this amount acting at B. This force X #is
the energy the one pound of water receives per second from the
7.'2

wheel = -~ ...
32°2

One pound of water in the discharge chamber of the pump has
gained this much energy from the time it left the supply-pipe, except
that it lost some of its energy by friction. If the vanes were bent
backwards towards D, the water would receive less energy than
this, and if they were bent forwards towards E, it would receive
more.

The water gets the energy to squander or store as it pleases.
It does squander a good deal of it in friction. But if it converted it
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2 .
all into potential energy it would raisc it to a height 3:_2- feet ; in
other words, it would be lifted to a height, above the pond from

2 . . .
which it was taken, of * _, or to a height twice that due to the velocity
3272

of the circumference of the wheel (since the velocity v is due to a height

2
given by the rule 22 = 2g 4, or 2 = 6:'4)° Suppose the rim of the

wheel had a velocity of 46°8 feet per second, a stone would fall
freely through 34 feet to acquire this velocity, hence the total lift of
the pump (if perfect as our rule assumes) would be 68 feet.

The real height to which the water is lifted, divided by the ideal

o2 . .
height -, is the efficiency of the wheel, or rather of the water
3272

passages all through the pump.

The wheel gets energy from an engine, and the energy given out
by the engine per pound of water lifted is a measure of the efficiency
of the shafting, belting, and wheel.

It may be well now, having considered some of the elementary laws
governing the action of the centrifugal pump, to go a little more fully
into the considerations influencing the
sizes and shapes of the pump passages, A A
and vanes. :

With a steady flow of water i

& + P + /& = constant D
28 w
= the total store of energy of 1 1b. :

In pipes, and in fact, wherever water
flows, its total store of energy is gradually
diminished by friction. The object of a
pump is to increase this total store.

In Fig. 81 is roughly shown the general
arrangement of a centrifugal pump. H is
the total height to which the water is to
be lifted, i.e.. the total potential energy
which every pound of water is to receive. )
Theoretically, # may be anything under
32 feet; in practice it is best not to have Fic. 81.
it more than from 6 to 10 feet. P is the
pump, S the suction pipe, and D the delivery pipe ; the water enters the
pump at the centre, being drawn in by the partial vacuum produced, is
whirled round in the revolving wheel or fan F, passing into the whirlpool

e




128 Hydraulic Machinery.

chamber or diffusor W,and volute or discharge chamber D (Fig. 82),
, 2
leaving the wheel with kinetic energy = ?; , where 7, is the circum-

ferential velocity of the outside of fan (radius »,). This large store
of kinetic energy is gradually changed into pressure energy in the whirl-
pool chamber, and by the time the
water reaches the delivery pipe it
has a sufficient pressure to force it
up the pipe, in which ascent almost
all its energy is gradually changed
into potential energy.

It is necessary that the water
should receive as little shock as
possible in entering the revolving
wheel, hence the vanes are shaped
as shown in Fig. 83 (where only a
few of the vanes are shown), so
that the direction of flow is as nearly
as possible the same the instant after
entering the wheel as it was the
instant before.

If this is to be accomplished,
evidently if #, is the velocity of the
< inner circumference, and 7, the
Fic. 82. radial velocity of the water, Fig.

84 shows that by measuring off
AB =17,and A D (at right angles to A B) = 7,, and completing the
parallelogram of velocities, 8 is the angle required.

And we see that tan = :,".
1

This is the angle of the vane just where it joins the inner circum-
ference.

In many turbines and some centrifugal pumps (which as far as
theory goes are merely reversed turbines) the radial velocity of the
water is constant through the wheel, this necessitating that the area
of the openings through which the water flows shall be the same
everywhere. This could be accomplished by making &, r, = &, r,,
4, and &, being the breadths at radii », and »,.

These dimensions are, however, modified as experience and
experiment indicate. In many good pumps like the Appold pump
(sce Fig. 87, p. 133) the outside area is much greater than the
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inner, and thus the water leaves with less radial velocity and greater
pressure, so that a much smaller whirlpool chamber suffices.

In our radial vane pump—to keep to the easy illustration for the
moment—if Q be the quantity of water passing through the pump per
second, Q = 2 7 », 4, minus a certain allowance for the thickness
of the vanes. If 7, be the radial velocity of the water at the outer
rim, and A the clear area of the openings by which it leaves

the rim,g =7,.

If % be the weight of 1 cubic foot of the liquid, since change of
momentum per second is force, and momentum

= mass X velocity =%Q X g,

it
"’ B ¢
“Vr
[
D % )2
. -
Fic. 83. Fic. 84.

the force exerted on the water = gain in momentum per second

=%Q,

£
and force X velocity per second = work done per second.

%Q 7,3 = the energy given to the water in ft.-Ibs. per second.

The total weight of water
energy imparted per second tc
altogether.

neglecting fricti

or
v
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or

. _H_
N
—a law like that for the velocity of a body falling freely. Hence

we see the velocity of the rim is equal to that of a stone which has
Sfallen freely through a height = half the total lift of the pump, ot is

Fia. 8s.

the velocity due to half the
head H.

This law is of consider-
able importance in the case
of turbines. 1t is only true
neglecting friction. As a
matter of fact, the pump has
to be driven at a greater
speed than this. It is also
only true if the pump is
delivering little water, but
just keeping the water ata
constant level in the dis
charge pipe. If the pump
were gradually to slow down
the water would fall and
drive the pump as a tur-
bine—supposinga sufficient
supply available.

The foregoing, viz. that the velocity 2, of the water is that of
the circumference of the fan, is only true for pumps in which,
as our figures indicate, the vanes are radial to the outside circum-

Fic. 86.

4

ference of the fan. Very often,
in fact nearly always in practice,
the vanes are curved as in Fig.
8s.

If », (Fig. 86) is the radial
velocity and 7, the velocity along
the vane, 7, being the velocity
of the rim of the wheel, then the
tangential velocity imparted to
the water = V, which is found as
indicated in the figure. -

Q% v = the tangential force exerted on the wate
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and
Q%) v=th i i
g_ v, V = the energy given to it per second,

there being w Q lbs. passing per second ; hence the work imparted to

2
each pound of water = %}r, which is less than Zg’—, since V is less

than v,.

If ¢ is the angle which the vane makes with the outer circum-
ference (Figs. 85 and 86), v, cot ¢ is the backward tangential
velocity, and the forward tangential velocity is evidently

v, — v, COt ¢,

. (v — v, cot Qw = momentum given per second = tangential
2 £ given pe g

force at rim of wheel, and

v, (v, — v, coOt @) %ﬂ = energy given per second to = Q lbs. of

water, or

v, (v — v, cot ¢) } = H = the energy given to 1 lb. of water neglect-

ing friction.
Really
L EXH
(2 (1/'2 — 7, cot ¢) n ( he ydraUllC efﬁcxency),
In the case of radial vanes the total energy given to the water in

the wheel is made up of half kinetic and half pressure energy. For
. .2 . . 2.2
total energy given to 1 lb. = g‘_ , kinetic energy = -2 i-’ .*. pressure

) 3
energy = i’} also.

In the case just considered, with the backward sloping vane, the
kinetic energy given to 1 lb.
_ (v = 7, cot ¢)?
28
and the total energy

1
= v, (v, — v, cot ¢) x

In the pump shown in Figs. 82z and 85, the whirlpool chamber is
seen in section at W, F being the impeller or fan driven by an
K 2
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engine or outside motor, and S the suction pipe. The use of a large
whirlpool chamber is to allow the kinetic energy to gradually die
out as the water recedes from the vanes. The use of the whirlpool
chamber was first pointed out clearly by the late Professor James
Thomson, whose name will always have a chief place as a pioneer
in this branch of engineering.

In pumps with backward sloping vanes, the water leaves the fan
with comparatively little kinetic energy, and the whirlpool chamber
may be small. This will be seen in the Appold pump, Fig. 87,
where it will also be observed that lateral easement is given to the
water as well, so that its velocity, and hence its kinetic energy, may
be small on leaving the fan,

In order to get the greatest efficiency out of a pump of this kind,
it is necessary—all other things being equal—to have the value of
¢ that which will make the /fa/ energy a maximum and the Aéinetic
energy a minimum.

This will best be seen from an example.

Let the total lift be 15 feet.

Circumferential velocity 7, = #/2 ¢ X 7% =22,
Let the radial velocity be } of that due to the total lift.

v, =3 /26X 15 = 4, say.

Total energy = 22 (22 — 4 cot qﬁ); .
- 2

Kinetic energy = (22 = 4cot¢)*

28
Tabulate as below.

moes sz exosc | s
90 ‘ 484 | 242 242
6o 433 ’ 194 239
45 ‘ 396 | 162 234
30 330 | 12 218
20 ! 222 61 161 '
15 I 156 | 25 131 |

This calculation is based on the assumption that the circum-
ferential velocity is in every case the same for the same lift, being
obtained from 7, = ~/ g H.
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If the angle ¢ be too small the vanes are too long and friction is
increased, also if we go much below 30° there is a rapid falling off
of the total energy. The right angle in the above example seems
to be between 30° and 20°

THE WHIRLPOOL CHAMBER.

In the pump, in order that there shall be a minimum waste of
energy in the whirlpool chamber, the water must follow the law of
natural or free vortex flow.

Let the pump be horizontal (4 remains constant in our equation
of constant energy per 1b.). Let there be a large whirlpool chamber.

‘;’: is the rate of change of pressure as we go further out.

Neglecting 4,
22 P
— + = constant.

2g
Differentiating,
v dv , 1 dP_
—i5—+=.5=o
g dr w dr
But
aP_w
r g r

(neglecting gravity, and here we are going across circumferential
stream lines).

Substituting value of Z.g, we get

v dv, 1 v
g'dr g7
Dividing across by 7’ and arranging,

d._v <+ é_f = 0
v r
Integrating,
log v 4+ log » = C (a constant) ;
v7 = antilog C,
or

I
Ve —.
r

This is the law of natural flow. A particle of water travels rmmd
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in a spiral path, its velocity decreasing as its distance from the centre
increases.

This is the sort of flow water naturally assumes, and it is seen,
but in a reverse order, on pulling the central plug out of a wash-
hand basin. In no other sort of flow is so little energy wasted, but
the flow through the hole is small. Hence, a pump with a very
large whirlpool chamber may give a good efficiency and a high
lift, but may not work well if a large flow is required, with com-
paratively small lift.

As a matter of fact, the whirlpool chamber, though a splendid
arrangement from the theoretic point of view and correct in principle,
would require to be very large to realise our idea of natural flow.
This large size would cause inconvenience and expense, whilst the
greater surfaces exposed to the moving water would give rise to con-
siderable waste of energy by friction. Hence it is probable that the
common-sense solution of the problem, due to numberless experi-
ments by makers, is the best.

The wheel having larger orifices at its outer than its inner circum-
ference, and the backward sloping of the vanes, allows the kinetic
energy to be small, and to be, to a great extent, converted into
pressure energy without the use of a large whirlpool chamber.

Hence the path of the water particle, instead of being that of a
spiral starting with the point at which it leaves the vanes, is much
more direct, and space is saved, a larger flow with a smaller pump is
possible, whilst nearly if not quite as high efficiency is obtained as it
is possible to have, even with a Thomson chamber of practical
dimensions.

The backward sloping of the vanes does 7o# add to the efficiency
of the pump unless the whirlpool and discharge chambers are of fixed
size and too small to realise our ideal of natural flow. Givena chamber
of proper size and shape, the radial vane pump is probably as efficient
as any other. Recent radial vane pumps (by Messrs. Farcot) have
given a high efficiency. They do not require to run at such a high
speed as sloping vane pumps. Radial vane fans also are very efficient.

The way in which the foregoing principles have been carried out
in typical pumps of English make, will be understood from a study of
Figs. 87, 88 and 89, where are shown, respectively, the *“ Appold”
pump of Messrs. Easton, Anderson and Goolden, the “ Conqueror”
pump of Messrs. W. H. Allen and Co., and a pump somewhat resem-
bling the “Invincible” pumps of Messrs. Gwynne. The last is a
working drawing with some dimensions, which may be of use to the
young designer. It may be necessary to remind such that usually a
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foot-valve is provided at the bottom of the suction pipe, also an orifice

in the pump cover to allow the pump to be filled with water or steam
at starting, so that the pump may commence to * draw.”

Fic. 88.
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CHANGE OF PRESSURE INSIDE THE REVOLVING WHEEL.

If we imagine the wheel to be horizontal and neglect gravity,
which we may do if speed and radius are sufficiently great, we get
the law already worked out for change of pressure with cylindric level
surfaces (see p. 22).

The law is, that

2
Pj-P = u;_; (r® = n?,
P, being the pressure at radius 7,, P, that at radius »,, a the angular
velocity, and w the weight of unit volume of the water. If we assume
that the pump has radial vanes, the whole change of pressure is
2 3 2
P=P. =%% (2 _,2) = (72 — v,%)
] zg("a 7’ w_—_—zg ’

where 7, and », are the outside and inside radii, v, and 2, the
corresponding linear velocities.

But the total gain of energy per pound (neglecting resistances) is the
gain of pressure energy + the gain of kinetic energy, and the gain
of pressure energy is—to stick to our easy rule—z- 3 times the gain
of pressure in /s. per square inch, being

. . . )2 ) 2 2 __ 52
2'3(p_p)=23X0624, (F=n)_7' -2}
144 144 2g 2g

which is also the gain of kinetic energy per Ib. Pressures being in
Ibs. per square foot, the kinetic energy will be expressed in ft.-Ibs.
Hence the gain of pressure energy and the gain of kinetic energy are
egual. ‘The total gain of energy is therefore twice the gain of pressure
energy, or twice the gain of kinetic energy.
This law is also nearly true in a slping-vane pump, if the pump is
delivering very little water.

CHANGE OF PRESSURE IN THE WHIRLPOOL .CHAMBER.

Although probably never attained in practice, it may be of interest
to study the law of change of pressure in a perfect whirlpool
chamber, where the water follows the Jaw of natural flow.

Since
1 K K?

r

or 22 =2
) 7” .

where K is a constant.
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Neglecting differences of level,
? P a constant.
28 w

Substituting for 2, we have

Ig + g:aconstant.
267 w
2
or P=aconstant—K»?/.
27
P, is pressure where radius is 7, ;
K?w
P, = a constant — 2er?
2
and P = the same constant — K_g;
287
Therefore, subtracting,
K2 Klw
P b= e T
= (1 _1)
or P=Piteia-si
2 4
where ¢ = Kiw .
28

To find value of ¢ or K.

‘=K’w and K2 = 2%43;
2g
_v*rw,
==z
_ ?2rw (1 1) _ 2w (1P — r3
R ki T ooy
vzﬂIJrz-rgg)
_P2+Tg—(—rzi—;o
But vr=K=10,7;
p="1"2
” ’
and A=l
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2
(1) .. P=Pz+’2’=g"j (=),
v, »,?
or (2) P=P2+~22? 1-';).
Since :‘;r= gz_.: =096

the law is practically
= . x -— ._23
(3) P=P,+o0'977, (‘ 2 )

Example—Take P, = 2116 lbs. per square foot atmospheric
pressure (it should be less than this by an amount equivalent to
suction height), », = & foot, » variable up to 1 foot, speed 300 revolu-
tions per minute, plot pressure curve for inside of wheel.

Continuing the example for whirlpool chamber, P, = 2833,
ry = 1 foot (v, = 985°96), we plot the values of p and .

The result is shown in the table.

Values of » Values of P Values of » Values of P

(feet). (Ibs. per sq. ft.). (feet). (Ibs. per sq. ft.).
o'§ ‘ 2116 1'1 ‘ 2999

0'6 2220 | §F ] ' 3125

o7 2345 13 3223

o8 | 2490 1°4 3302

09 | 2650 15 3364 - ﬁ
1o 2833 '

The left-hand set of values are obtained from the law for the
inside of the revolving wheel, the right-hand set from the law above.

These results are shown in curves at Fig. go, there being #we
curves, each with its own law, these curves joining at A B.

In the foregoing the elementary conception of radial vanes has
been adhered to as giving rise to less cumbrous expressions, but the
change required to render the work applicable to the ordinary pump
with sloping vanes is easily made, as indicated at page 131.

In many modern pumps, especially of moderate size, the water
enters at one side only. This gives an endlong pressure along the
impeller axis, which may be balanced hydraulically or taken up by a

- ™ suitable bearing. For the purposes of the student, the symmetrical
rms referred to are of more importance.
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CENTRIFUGAL PUMPS IN SERIES.

Centrifugal pumps are sometimes worked in series. One case is
recorded by Barr in which two centrifugal pumps working thus—the
first discharging into the suction pipe of the second—raised water
through a height of 150 feet. The efficiency of the combination in
this case was small. High lift pumps are, however, now made to give
a good efficiency.

EFFICIENCY OF CENTRIFUGAL PuMmps,

The centrifugal pump does not compare well with the turbine as
regards efficiency, partly on account of the non-guiding of the water
at entry in the case of the former, but mainly owing to the fact that
in the latter the conversion of the kinetic energy of the water into the

AAvIve N FEERIL.

Fi16. go.

pressure, and finally the potential, form is not easily accomplished
without considerable waste. Some of the methods of diminishing
this loss which have been employed, have :
More fully stated they are (1) the use of a ]
as in the Thomson pump; (2) the use of
gradually increasing area, as in the Mather-R
use of backward-sloping vanes, as adopted t
and by many makers since then ; and (4) th
the discharge chamber, as tried by Dr. Stantc

* Proc. Inst. C.E., Feb. 19
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Methods (1) and (2) have not been widely adopted, mainly from
constructional reasons, great size and consequently increased friction
in the first, and the difficulty of altering the discharge area to suit
variable flows in the second, being adverse factors. Method (3) is of
course, common, but the speed has to be increased for the same lift
as compared with radial-vaned pumps, and even a moderate increase
of speed involves large increase of waste by friction. Whilst pumps
with curved vanes are certainly superior to those with radial vanes
for moderate speeds, their superiority is doubtful for high speeds,and
the best Continental makers now seem to favour the latter form.
Method (4) has been tried experimentally by Dr. Stanton, with
apparently good results. The gain in efficiency is probably due to
diminished slip and friction, and to the gain in pressure as compared
with a pump discharging into a free vortex. The advantage of the
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FiG. 91.

guides is most marked when the wheel has radial vanes. It was
found that the number of guide passages should not be less than four ;
their areas being such that the velocity of flow into the passages is
equal to the velocity of discharge from the wheel.
In regard to the usual methods of measuring efficiency practic-
. . water horse-power .
ally, efficiency is often taken to mean brake horse-power in the case
of pumps driven by a belt; but in direct-driven pumps it is often
water horse-power
indicated horse-power
not easily obtained. Some of Gwynne’s pumps have given 65 per
cent. by the latter method of measurement, which of course includes
the mechanical efficiency of the engine.
The curves shown in Fig. g1 give a comparative view of the

taken to mean

, as the brake horse-power is
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efficiencies of centrifugal and reciprocating pumps, on the authority
of Mr. Webber.*

Professor Unwin has shown that the friction of the water in the
narrow space between the revolving fan and the casing has a good
deal to do with the loss of efficiency. The internal surfaces, especially
those which touch rapidly moving water, should be as smooth as
possible.

RESUME,

The following rules, collected, or deduced from the foregoing,
enable some points of the design to be settled, it being understood
that proportions can best be obtained from the drawings of a good
pump.

Let N = speed in revolutions per minute,

b, = clear breadth of passages at outside of disc.
¢ = thickness of vane.
n = number of vanes.

Then &, cosec ¢ = area of vane where it meets outer surface,
and hence clear area = 2 7 », b, — 7 b, ¢ cosec ¢.

H and Q are given ; N and ¢ can be fixed.

_ G

Q= 6ox 635
also 7, = /2gH to 1°3 4/2¢H in good pumps, the lower value
corresponding approximately with ¢ = 30° and the higher with
¢ =15

At the outside the radial velocity

where G = number of gallons raised per minute ;

U= (v by — by Foosec $) C

where C is a coefficient, usually about o-9.

Also 7, = zwr,é%,andV:z'g—v,cot:ﬁ.

The radial velocity at inner circumference = 7, X -23 ; A, being
1

the outer, and A, the inner clear area.
The radial velocity at the eye of the disc is often taken as

approximately = o°25 +/2 gH.

® ¢Transactions of the American Society of Mechanical Engineers,’ vols. vii.
and ix.
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Fix r,; thenz, = 2 er%, and hence 0 (angle of vane at inner

end) can be found as indicated at p. 128.

=&H

The efficiency, neglecting loss at entrance, etc. v
! 2

XIV.

TURBINES.

THE reader who has followed carefully the reasoning in the case of
centrifugal pumps will have no difficulty in understanding all the
theoretical considerations which are of much importance in the case
of the turbine. A turbine is simply a centrifugal pump reversed;
but the turbine is usually furnished with curved guide vanes to guide
the water as it enters the wheel.

Remember, if water moves from one place to another under
the action of gravity alone, 1 Ib. of it has the following store of
energy :

/4 ft.-lbs. of energy (potential), being % feet above datum level.
:—'; ft.-lbs. of energy (kinetic), because of its velocity of z feet
per second.

2'3 p ft.-lbs. of energy (pressure), because of its pressure of
2 1bs. per square inch. '

Now water-wheels, turbines, water-pressure engines, hoists, etc.,
take part of its store of energy from every pound of water and give it
to machinery or to goods or people. Asa simple case of the abstrac-
tion of energy, the action of the turbine may be readily understood
by the illustration of the railway train given at page 125.

Another illustration is furnished by the suggestion of some one
that the stations of the Underground Railway in London should be
furnished with large circular platforms, kept moving so that their
circumferences should go at a known speed, say, 5 miles an hour.
The trains would not have to stop, but merely slow down to the
speed of the periphery of the platform, when the passengers could
alight and walk towards the centre of the platform, gradually losing
their kinetic energy, and finally finding their way by a spiral staircase
at the centre up to the street. If a steady stream of people could *-
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relied on, no driving mechanism would be necessary, as each
passenger on alighting would give up the momentum, received by
him from the train, to the platform, thus contributing to the driving
force required. Of course this is impracticable, but it is a good.
illustration of what takes place in a turbine. Each pound of water
gives up its momentum to the turbine, and it should drop out, after
passing through the turbine, with 70 momentum in the direction of
the turbine’s motion, like the man going up the spiral staircase to the
street.

Turbines may be roughly divided into two classes—reaction
turbines and impulse turbines—in the first of which the wheel
passages are always full and
therefore the water under
pressure ; and in the second
the passages are not usually
filled.

In considering the ac-
tion of the turbine, it may
be well to study the inward-
flow wheel of Professor
James Thomson, as the
theory of the turbine is in
this case most clearly ex-
emplified. Water flows from
a pen-trough through cast-
iron pipes to A (Fig. 92).
Remember the pipe should
be bell-mouthed and as
large as convenience will Fic. g2.
allow.

Figs.. 92, and the enlarged view 93, show a plan of the
chamber B into which the water flows. This chamber is so large that
the velocity here is small, and the water finds its way equally readily
into the central space, where it flows guided by the guide blades 1, 2,
3, 4, into the revolving wheel.

At the last, just before it enters the wheel, it has a very consider-
able velocity as the space is small, the guide-blade chamber being
narrow. The guide-blades cause the water to flow radially as well
as tangentially, the fangential/ velocity being approximately equal to
that of the wheel.

If you wanted to enter a moving railway train without shock, you
would be wise to get up a velocity equal to that of the train in the

L
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or
= "
=z2m(an) X X2,
or

Q=17 X27rr>

In practice, allowance must be made for the thickness of the
vanes. Neglecting this

/
fl=\/ Q .
27V,

si b

F1G. 94.

The horse-power of the turbine, neglecting all losses, is given by
the rule
_H.Qx60ox 624 _ _ .
H.P. = 300 = 0'1134. H.Q=HG x 0708,
where G is the number of gallons passing per second.

The wuseful horse-power =o0°'085 HQ =o°531 H G at 75 per
cent. efficiency.

In the foregoing, for the sake of simplifying the expressions, the
wheel vanes are supposed to be normal to the outside or inlet circum-
ference. As will be seen from the figure, they are not quite normal,
but slope, so as to more readily admit the water. Thus the water
the instant after it enters the wheel has 7o/ the same but a greater

L2
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velocity, in the direction of the circumference, than the wheel, as it is
moving forward as well as inward along the vane.
The forward component of its velocity must be added to the
velocity of the rim.
The construction may be simply given as follows :—Draw E D to
represent the tangent, and B D the vane (Fig. 95) at the point where
the latter meets the inlet surface of the
""v/? wheel. At D draw D C at right angles
to E D and of length to represent the
radial velocity of the water. Draw CB
parallel to D E and produce it, making
A B to represent z,, the linear velocity
of the outer circumference.
Complete the rectangle AE D C,
then E D represents the actual velocity
v of the water in the direction of the
tangent. Evidently 2 = 7, 4 7, cot ¢.

Vo B C If Q be the quantity passing per
\ second through the wheel, the momen-
Ve tum given per second by the water to
the wheel is
E v D\¢ Qz-‘»' (3 + 7, cot ¢),
Fi1G. 95. s

which is the force acting on the wheel,
and this multiplied by z, represents the energy given to the wheel

per second by the mass E”gQ of water.

The energy given per second by 1 1b. is

:r- (v, + 7, cot ¢) , ft.-lbs.

2
This appears to be greater than 1; , the energy given per second by

1 Ib. in the case of radial vanes. It /s greater if z, is obtained as
before (see rule for circumferential velocity of centrifugal pumps if

) 2
vanes are radial, p. 129), by equating%; to H, the total fall.

But in this case the velocity 7, would not be strictly the same as
before, for to getit we must put the energy given per second by 1 lb.
of water equal to the potential energy lost, i.e. H.

Or, neglecting hydraulic losses as before,
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Ltz cot ¢)7, = HS

7,47, v, cot ¢ = gH,
or
v, =g¢gH — v, 7, cot ¢.

For radial vanes, 7,2 = ¢ H.

Evidently z, is less than in the case of radial vanes, but as cot ¢
is usually small, 7, 7, cot ¢ may often be neglected. A calculation
shows that for an angle of 60° and head of 6o ft., 7, is about 6% per
cent. less than in the case of radial vanes.

ANGLE OF VANES AT OUTLET SURFACE.

The condition determining the angle which the vane should make
at the outlet surface of the wheel is that the water should leave with
no tangential velocity, therefore with no kinetic energy in the direc-
tion of the wheel’s motion.

In the case of the inward-flow turbine we are now considering. it
is not difficult to see how the necessary construction is obtained.

Draw 7, (Fig. 96) normal to the inner circumference, and make
it, say, = } of the velocity due to the total head = } v/ 2 ¢ H.

Draw 7, tangential to the inner circumference; and make it
=066 4/2 ¢H x'l as the best prac-
r, :

tical value; complete the parallelo-
gram ; then the water has a radial flow
7, of its own, also « forward velocity 7,
due to the wheel, and we want it to
issue with no tangential velocity relative
to the earth. [Evidently the actual ve-
locity it has (represented by 7)) should
have a backward component = the for-
ward resultant velocity along the same
line. If a is the angle required, then
rocosa =7, Thusais obtained, since
7,

tan a = — » 7, and 7, being at right angles to one another.

)

Fic. 96.

* Really the left-hand expfession divided by the right = » (the hydraulic
efficiency) ; or the equation should be

—(lr (73 + v, cot ) 7, = n H.
S
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A similar construction will be required in axial-flow turbines,
v, being drawn normal to the outlet surface of the whee, whatever it
may be.

RaADIAL-FLOW TURBINES.—SHAPES OF VANES.

The shape of vane adopted in practice is like that shown in Fig. 94,
a contrary curvature being adopted. This is to avoid as far as
possible the contraction of the vein of water flowing from the buckets
of the wheel, for it has already been pointed out that wherever a vein
of water issues from an orifice which is of such a shape that it con-
#racts the jet, energy is wasted ; and at p. 58 coefficients of Aydraulic
resistance are given enabling us to calculate the waste of energy in
some cases. Now the shaping of the vanes as here shown gives a
closer approach to a uniform depth of channel for the water near the

[

FiG. 97.

inner circumference, and hence less contraction and less waste of
energy. A very marked contrary curvature would be objectionable,
for reasons already explained.

It can be shown that if the angles of the vanes are properly
arranged andithe proportions of the turbine correct, the shape of the
vane itself is not of great importance, as turbines with widely differing
shapes of vanes give nearly the same efficiency. The surfaces of the
vanes should be smooth and the vanes thin, all abrupf changes in the
curvature of the water-path being carefully avoided. A good con-
struction for the vane outline is as follows (Fig. 97) :—
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CONSTRUCTION.

With centre C and radii 7, and r, draw the outline of the inner
and outer circumferences of the wheel.

Take any point P on the inner circle and make CP D = a.

Draw C D perpendicular to P D, and a circle from C with C D as
radius. Make P Q = the inner pitch, and draw a radius CQ L.

Imagine a thread wound round circle C D and fastened, say, at E,
this thread bearing a pencil at P. Let the thread be unwound ; the
pencil will trace out a curve like P L M, M being a little to the left
of CQL.

Draw F C, a tangent at point where vane cuts the outer circum-
ference, and make the angle C, FH = 180° — ¢.*

Then complete the vane from F to M by hand, or with an arc of
a circle ; the wheel revolves in the sense indicated by the arrow.

RapiaL OuTwARD-FLOW TURBINES.

Outward-flow turbines were used before those with inward flow,
but the construction is very si<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>